Page 98 - Principles and Applications of NanoMEMS Physics
P. 98

86                                                      Chapter 3


                      ª      E           U 1(  − e −ika 2  ) º
                                                      /
               H    =  «       s                         » ,                             (11)
                  I   « U 1  − e −ika 2/  )    E         »
                         (
                      ¬                          p       ¼
               H Ψ     =  EΨ ,                                                                                   (12)
                  I  I       I
                                   B                 W               B
                                   B                 W               B
                                   B                 W               B
                    Left Cladding  B                 W               B
                    Left Cladding
                                                              Right Cladding
                                                              Right Cladding
                         III
                         III
                         III                II II II II       I I I I
                         III
                                                            INCOMING
                                                            INCOMING
                                E E E c c c c
                                E z() z() z() z()
                                                           REFLECTED
                                                           REFLECTED
                   TRANSMITTED
                   TRANSMITTED            ∆ ∆ E c z() z() z() z()
                                          ∆ E E
                                          ∆ E c c c
                         . . . GaAsGa AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . .. . . GaAsGa AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . . . . GaAsGa AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . . . . GaAsGa  AsAl . . .      AlAsGaAs . . GaAsAlAs . . AlAsGaAsGaAs . . .
                         . .
                            0        1     2 . . .       n-1   n    n+1 . . .
                            0        1     2 . . .       n-1   n    n+1 . . .
                            0        1     2 . . .       n-1   n    n+1 . . .
                            0        1     2 . . .       n-1   n    n+1 . . .
                       Figure 3-5. RTD structure for two-band tight-binding modeling.
             where  E  and  E  are orbital energies prior to coupling to next neighbors,
                            P
                    S
             and  a is the lattice  constant. Next, solutions  are formulated for the three
             regions as follows. For region I, we have (13) and (14).
             Ψ  L  =      1        ( E −  E φ +  i  E −  E  e −  k i  (a  ) 4 /  φ     (13)
               I     2E −  E −  E          p  s          s              ) p
                            s    p
             Ψ  R  =      1        ( E −  E φ    i −  E −  E  e  k i −  (a  ) 4 /  φ     (14)
               I     2E −  E −  E          p  s          s              ) p
                            s    p

             For region II we have the transfer matrix (15).

                                                       E
                                                   1
                     ª  U (n − ,n − )         E p  (n − )  − (n )  º
                                 1
                             1
             ªC s (n  º )  «                                     » ªC s (n −1  º )  (15)
                              1
                                                     1
             «    » =  « «  U (n  − ,n )        U (n − ,n )      » » «   »
             « ¬ C  p (n ) » ¼  « [ − EE  s (n ) ] (nU  − ,1 n − )1  U (n − ,1 n )  + [ − EE  s (n  ][ ) E  p  (n − )1  − E ] « C p  (n −1  » ) ¼
                                                                 ¬
                                                                 »
                                 1
                     « ¬  U (n ,n )U (n − ,n )  U (n ,  ) n  U (n ,n )U (n − ,1 n )  » ¼
             For coupling regions II and III we have (16) and (17).
   93   94   95   96   97   98   99   100   101   102   103