Page 99 - Principles and Applications of NanoMEMS Physics
P. 99

3. NANOMEMS PHYSICS: Quantum Wave Phenomena                    87


               Ψ     =  C φ   + C φ    =  C Ψ  L   + C Ψ   R                          (16)
                 III     s  s     p  p     L   III    R   III

                              ª       1                  −i         º
                              «          −ika 2/        ika 4/  −ika 4/  »
             ªC  º            « E −E 1(  +e   )   E −E ( e  +e      )  ª » C s  º    (17)
                                    p
                                                      s
             «  L  » = 2 E  −E s  −E p  «                            « »  »
             « C  »           «       1                   i          « »  C  » p
             ¬ R ¼                                                   ¬  ¼
                              «  E  −E 1(  +e ika 2/  )  E −E ( e ika  +e −ika 4/  )  »
                              « ¬   p                 s             » ¼
             The  dispersion  relation,  velocity, and overlap  integral defining the tight-
             binding are given by (18), (19), and (20).

                         ¨ ±
               k (  E )  =  § 4  · ¸ arcsin  ª 1  ( E  − E )(  E  − E  p  º »                         (18)
                                                 s
                                   «
                         ¨
                            ¸
                                     2
                         © a  ¹    ¬ U                       ¼
               v =  ±  aU  2  sin( ka  ) 2 /                                                                   (19)
                     =  2 ( E −  E −  E  p  )
                               s
                    2=  2  (E  s  −  E  p  )
               U =                                                                                          (20)
                         m  * a  2
             Finally, the current is given by (21), where  x =  E  kT .


                         2  ∞         v      k      § ¨  1  + e ( E F  /  kT  − x)  · ¸  (21)
                    e(
                      kT )
                               ⋅
             J ( V )  =    ³ dx 2 ⋅    I    ⋅  III  ln  ¨                ¸
                     4π 2 =  0        2      = v    ¨ ¨  ª « E  −eV /)  kT  −  º » x  ¸ ¸
                                                         (
                                  C    v       III   1   « ¬  F         » ¼
                                    L   III         © + e                ¹
             This formulation, though not fully predictive, is a useful tool for the analysis
             and design of RTDs and related devices. A typical I-V curve produced using
             this formalism is shown in Figure 3-6.
                                        In Ga As/AlA s R T
                                        In Ga As/AlA s R T D D
                               4 4
                           4 10
                           4 10  4 4
                           Current (A/cm2) Current (A/cm2)  3 10  4 4 4 4
                           3 10
                           2 10
                           2 10
                           1 10
                           1 10
                                0 0
                                  0 0  0.5   1 1  1.5  2 2  2.5   3 3
                                                 1.5
                                                            2.5
                                      0.5
                                           V o lta g e  (V o lts) )
                                           V o lta g e  (V o lts
                Figure 3-6. Current-voltage curve calculated via two-band tight-binding formalism.
   94   95   96   97   98   99   100   101   102   103   104