Page 281 - Principles of Catalyst Development
P. 281
272 REFERENCES
121. F. F. Vol'kenstein, The Electronic Theory of Photocatalytic Reactions on Semiconductors,
Advances in Catalysis, Vol. 23, p. 157 (D. D. Eley, H. Pines, and P. B. Weisz, eds.),
Academic, New York (1973).
122. M. Formenti and S. J. Teichner, Heterogeneous Photocatalysis, Catalysis, Vol. 2 (C.
Kemball and D. A. Dowden, eds.), p. 87, The Chemical Society, London (1978).
123. R. I. Bickley, Heterogeneous Photocatalysis, Catalysis, Vol. 5 (G. C. Bond and G. Webbs,
eds.), p. 308, Royal Society of Chemistry, London (1982).
124. R. I. Bickley, T. Gonzalez-Carreno, and L. Palmisano, the Preparation and the Charac-
terization of Some Ternary Titanium Oxide Photocatalysts, Preparation of Catalysts IV
(B. Delmon, P. Grange, P. A. Jacobs, and G. Poncelet, eds.), p. 297, Elsevier, Amsterdam
( 1987).
125. P. Mark, A Comparison of Chemical Activity at Ordered and Disordered Semiconductor
Surfaces, Catal. Rev. 12,71 (1975).
126. C. S. John and M. S. Scurrell, Catalytic Properties of Aluminas for Reactions of Hydrocar-
bons and Alcohols, Catalysis, Vol. I (c. Kemball, ed.), p. 136, The Chemical Society,
London (1977).
127. J. B. Peri, A Model for the Surface of y-alumina, 1. Phys. Chern. 69, 220 (1965).
128. M. W. Tamele, Chemistry of the Surface and the Activity of Alumina-Silica Cracking
Catalyst, Disc. Faraday Soc. 8, 270 (1950).
129. H. Heinemann, A Brief History of Industrial Catalysis, Catalysis, Science and Technology,
Vol. I (1. R. Anderson and M. Boudart, eds.), p. I, Springer-Verlag, New York (1981).
130. V. Haensel, Catalytic Cracking of Pure Hydrocarbons, Advance in Catalysis, Vol. 3 (W.
G. Frankenburg, V. I. Komarewsky, and E. K. Rideal, eds.), p. 179, Academic, New
York (1951).
131. A. G. Oblad, T. H. Milliken, Jr., and G. D. Mills, Chemical Characteristics and Structure
of Cracking Catalysts, Advances in Catalysis, Vol. 3 (W. G. Frankenburg, V. I.
Komarewsdky, and E. K. Rideal, eds.), p. 199, Academic Press, New York (1951).
132. J. A. Rabo, Unifying Principles in Zeolite Chemistry and Catalysis, Catal. Rev. 23, 293
11981 J.
133. E. M. Flanigen, Molecular Sieve Materials: Their Synthesis, Properties and Characteris-
tics, Catal. Rev. 26, 483 (1984).
134. R. Rudhdm and A. Stockwell, Catalysis on Faujasitic Zeolites, Catalysis, Vol. I I.e.
Kemball, ed.), p. 87, The Chemical Society, London (1977).
135. H. Heinemann, Technological Applications of Zeolites in Catalysis, Catal. Rev. 23, 315
( 1981).
136. J. W. Wood, Molecular Sieve Catalysts, Applied Industrial Catalysis, Vol. 3 (8. E. Leach,
ed.), p. 272, Academic, New York (1984).
137. W. O. Haag and N. Y. Chen, Catalysts Design with Zeolites, Catalyst Design, Progres.\
and Perspective (L. L. Hegedus, ed.), p. 163, John Wiley, New York (1987).
138. B. Imelik, C. Naccache, Y. Ben Taarit, J. C. Vedrine, G. Coudurier, and H. Praliand,
( ed.), Catalysis by Zeoll/e\" Elsevier, Amsterdam (1980).
139. W. M. Meier and J. B. Uytterhoeven (eds.), Molecular Sieves, Elsevier, Amsterdam (1980).
140. c. D. Chang, Hydrocarbons from Methanol, Catal. Rev. 25, I (1983).
141. 1. T. Richardson, The Effect of Faujasite Cations on Acid Sites, 1. Catal. 9, 182 (1967).
142. 1'. E. Whyte, Jr., and R. A. Dalla Betta, Zeolite Advances in the Chemical and Fuel
Industries: A Technical Perspective, Catal. Rev. 24, 567 (lY821.
143. P. A. Jacobs, Acid Zeolites: An Attempt to Develop Unifying Concepts, Calal. Rev. 24,
415 1 19R2).
144. T. Takeshita, R. Ohnishi, and K. Tanabe, Recent Survey of Catalysis by Solid Metal
Sulfates, Catal. Rev. 8, 29 (1973).
145. J. B. Moffat, Phosphates as Catalysts, Catal. Rev. 18, 199 (1978).