Page 134 - Probability and Statistical Inference
P. 134

3. Multivariate Random Variables  111

                           One should derive the conditional pdf’s and the associated conditional means
                           and variances. See the Exercise 3.3.2. !


                                 In a continuous bivariate distribution, the joint, marginal, and
                              conditional pdf’s were defined in (3.3.1)-(3.3.2) and (3.3.5)-(3.3.6).

                              In the case of a two-dimensional random variable, anytime we wish to
                                                               2
                           calculate the probability of an event A(⊆ ℜ ), we may use an approach which
                           is a generalization of the equation (1.6.2) in the univariate case: One would
                           write


                           We emphasize that the convention is to integrate f(x , x ) only on that part of
                           the set A where f(x , x ) is positive.      1  2
                                           1  2
                              If we wish to evaluate the conditional probability of an event B(⊆ ℜ)
                           given, say, X  = x , then we should integrate the conditional pdf f (x ) of X 2
                                          1
                                      1
                                                                                  2/1
                                                                                     2
                           given X  = x  over that part of the set B where f (x ) is positive. That is, one
                                 1
                                     1
                                                                   2/1
                                                                      2
                           has
                              Example 3.3.4 (Example 3.3.2 Continued) In order to appreciate the
                           essence of what (3.3.20) says, let us go back for a moment to the Ex-
                           ample 3.3.2. Suppose that we wish to find the probability of the set or
                           the event A where A = {X  = .2 ∩.3 < X  = .8}. Then, in view of (3.3.20),
                                                  1           2
                           we obtain
                           dx  = 1.2(.845 – .62) = .27. !
                             1
                              Example 3.3.5 Consider two random variables X  and X  whose joint
                                                                         1
                                                                                2
                           continuous distribution is given by the following pdf:

                           Obviously, one has χ  = χ  = (0, 1). One may easily check the following
                                              1
                                                  2
                           expressions for the marginal pdf’s:



                              Now, suppose that we wish to compute the conditional probability that
                           X  < .2 given that X  = .5. We may proceed as follows. We have
                            2               1
   129   130   131   132   133   134   135   136   137   138   139