Page 361 -
P. 361
References 343
34. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, 1995.
35. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri Nets,
volume 3098 of Lecture Notes in Computer Science. Springer, Berlin, 2004.
36. P.C. Diniz and D.R. Ferreira. Automatic Extraction of Process Control Flow from I/O Op-
erations. In M. Dumas, M. Reichert, and M.C. Shan, editors, Business Process Management
(BPM 2008), volume 5240 of Lecture Notes in Computer Science, pages 342–357. Springer,
Berlin, 2008.
37. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information Sys-
tems: Bridging People and Software through Process Technology.Wiley,New York,NY,
2005.
38. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures—Part 1 and Part 2. Acta Infor-
matica, 27(4):315–368, 1989.
39. D.R. Ferreira and D. Gillblad. Discovering Process Models from Unlabelled Event Logs. In
U. Dayal, J. Eder, J. Koehler, and H. Reijers, editors, Business Process Management (BPM
2009), volume 5701 of Lecture Notes in Computer Science, pages 143–158. Springer, Berlin,
2009.
40. Forrester. The Forrester Wave: Enterprise Business Intelligence Platforms (Q4 2010).
www.forrester.com, 2010.
41. Gartner. Magic Quadrant for Business Intelligence Platforms. www.gartner.com, 2010.
42. Gartner. Magic Quadrant for Business Process Management Suites. www.gartner.com, 2010.
43. S. Goedertier, D. Martens, B. Baesens, R. Haesen, and J. Vanthienen. Process Mining as
First-Order Classification Learning on Logs with Negative Events. In A. ter Hofstede, B.
Benatallah, and H.Y. Paik, editors, BPM 2007 International Workshops (BPI, BPD, CBP,
ProHealth, RefMod, Semantics4ws), volume 4928 of Lecture Notes in Computer Science,
pages 42–53. Springer, Berlin, 2008.
44. S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust Process Discovery with
Artificial Negative Events. Journal of Machine Learning Research, 10:1305–1340, 2009.
45. E.M. Gold. Language Identification in the Limit. Information and Control, 10(5):447–474,
1967.
46. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering Expressive Process Models by
Clustering Log Traces. IEEE Transaction on Knowledge and Data Engineering, 18(8):1010–
1027, 2006.
47. P.D. Grünwald. Minimum Description Length Principle. MIT Press, Cambridge, MA, 2007.
48. C.W. Günther. XES Standard Definition. www.xes-standard.org, 2009.
49. C.W. Günther. Process Mining in Flexible Environments. PhD Thesis, Eindhoven University
of Technology, September 2009.
50. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Simplification
Based on Multi-Perspective Metrics. In G. Alonso, P. Dadam, and M. Rosemann, editors,
International Conference on Business Process Management (BPM 2007), volume 4714 of
Lecture Notes in Computer Science, pages 328–343. Springer, Berlin, 2007.
51. C.W. Günther, A. Rozinat, W.M.P. van der Aalst, and K. van Uden. Monitoring Deployed
Application Usage with Process Mining. BPM Center Report BPM-08-11, BPMcenter.org,
2008.
52. D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, Cambridge, MA,
2001.
53. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and
the Play-Engine. Springer, Berlin, 2003.
54. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings 11th
European Conference on Machine Learning, volume 1810 of Lecture Notes in Computer
Science, pages 183–194. Springer, Berlin, 2000.
55. J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-Modellen.PhD
Thesis, Universität Ulm, November 2001.
56. IDC iView. The Digital Universe Decade—Are You Ready? International Data Corporation,
Framingham, MA, 2010. http://www.emc.com/digital_universe.