Page 365 -
P. 365

References                                                      347


            116. B.F. van Dongen. Process Mining and Verification. PhD Thesis, Eindhoven University of
                Technology, 2007.
            117. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building Instance
                Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, International Con-
                ference on Conceptual Modeling (ER 2004), volume 3288 of Lecture Notes in Computer
                Science, pages 362–376. Springer, Berlin, 2004.
            118. B.F. van Dongen, N. Busi, G.M. Pinna, and W.M.P. van der Aalst. An Iterative Algorithm for
                Applying the Theory of Regions in Process Mining. In W. Reisig, K. van Hee, and K. Wolf,
                editors, Proceedings of the Workshop on Formal Approaches to Business Processes and Web
                Services (FABPWS’07), pages 36–55. Publishing House of University of Podlasie, Siedlce,
                2007.
            119. B.F. van Dongen, A.K.A. de Medeiros, and L. Wenn. Process Mining: Overview and Outlook
                of Petri Net Discovery Algorithms. In K. Jensen and W.M.P. van der Aalst, editors, Trans-
                actions on Petri Nets and Other Models of Concurrency II, volume 5460 of Lecture Notes in
                Computer Science, pages 225–242. Springer, Berlin, 2009.
            120. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation Se-
                mantics. Journal of the ACM, 43(3):555–600, 1996.
            121. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes Us-
                ing Woflan. Computer Journal, 44(4):246–279, 2001.
            122. S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge
                University Press, Cambridge, 1994.
            123. A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible Heuristics Miner (FHM). BETA Working
                Paper Series, WP 334, Eindhoven University of Technology, Eindhoven, 2010.
            124. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-
                Based Data Using Little Thumb. Integrated Computer-Aided Engineering, 10(2):151–162,
                2003.
            125. L. Wen, W.M.P. van der Aalst, J. Wang, and J. Sun. Mining Process Models with Non-free-
                Choice Constructs. Data Mining and Knowledge Discovery, 15(2):145–180, 2007.
            126. L. Wen, J. Wang, W.M.P. van der Aalst, B. Huang, and J. Sun. A Novel Approach for Process
                Mining Based on Event Types. Journal of Intelligent Information Systems, 32(2):163–190,
                2009.
            127. M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer,
                Berlin, 2007.
            128. Wikipedia. Observable Universe. http://en.wikipedia.org/wiki/Observable_universe, 2011.
            129. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques
                (Second Edition). Morgan Kaufmann, San Mateo, CA, 2005.
            130. Workflow Patterns Home Page. http://www.workflowpatterns.com.
            131. M. Zur Muehlen and J. Recker. How Much Language Is Enough? Theoretical and Practical
                Use of the Business Process Modeling Notation. In Z. Bellahsene and M. Léonard, editors,
                Proceedings of the 20th International Conference on Advanced Information Systems Engi-
                neering (CAiSE’08), volume 5074 of Lecture Notes in Computer Science, pages 465–479.
                Springer, Berlin, 2008.
   360   361   362   363   364   365   366   367   368   369   370