Page 326 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 326
Potentials of postharvest rice crop residues as a source of biofuel 295
Behera, S., Singh, R., Arora, R., Sharma, N.K., Shukla, M., et al., 2015. Scope of algae as
third generation biofuels. Front. Bioeng. Biotechnol. 2, 90.
Bhattacharyya, R., Ghosh, B.N., Mishra, P.K., Mandal, B., Rao, C.S., Sarkar, D., et al., 2015.
Soil degradation in India: challenges and potential solutions. Sustainability 7,
3528 3570.
Bollock, M., 1999. Studies on ethanol production on lignocellulosics: SSF and cellulase pro-
duction (Ph.D. thesis). Technical University of Budapest, Hungary.
BP, 2013. BP Statistical Review of World Energy 2013. British Petroleum (BP), London.
Brar, S.S., Kumar, S., Narang, R.S., 2000. Effect of moisture regime and nitrogen on decom-
position of combine harvested rice residue and performance of succeeding wheat in
rice wheat system in Punjab. Indian J. Agron. 45, 458 462.
Chandra, B.P., Sinha, V., 2016. Contribution of post-harvest agricultural paddy residue fires
in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic
acid and carbon monoxide. Environ. Int. 88, 187 197.
Chen, Y., Sharma-Shivappa, R.R., Chen, C., 2007. Ensiling agricultural residues for bioetha-
nol production. Appl. Biochem. Biotechnol. 143, 80 92.
Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: a
review. Bioresour. Technol. 99 (10), 4044 4064. Available from: https://doi.org/
10.1016/j.biortech.2007.01.057.
Cheng, J.J., Timilsina, G.R., 2011. Status and barriers of advanced biofuel technologies: a
review. Renewable Energy 36 (12), 3541 3549.
Cheremisinoff, N.P., 1997. Biotechnology for Waste and Wastewater Treatment, first ed.
Noyes Publication, Westwood, NJ, ISBN: 0-8155-1409-3.
Cherubin, M.R., Oliveira, D.MdaS., Fiegl, B.J., Pimentel, L.G., Lisboa, I.P., Gmach, M.R.,
et al., 2018. Crop residue harvest for bioenergy production and its implications on soil
functioning and plant growth: a review. Sci. Agric. 75 (3), 255 272. Available from:
https://doi.org/10.1590/1678-992X-2016-0459.
Childs, N., Skorbiansky, S.R., 2018. Rice Outlook, RCS-18I. US Department of Agriculture,
Economic Research Service, 1 25.
Claassen, P.A.M., van Lier, J.B., Lopez Contreras, A.M., van Niel, E.W.J., Sijtsma,
L., Stams, A.J.M., et al., 1999. Utilization of biomass for the supply of energy
carriers. Appl. Microbiol. Biotechnol. 52, 741 755.
Cowie, A., Soimakallio, S., Brandao, M., 2016. Environmental risks and opportunities of bio-
fuels. In: Bouthillier, Y.L., Cowie, A., Martin, P., McLeod-Kilmurray, H. (Eds.), The
Law and Policy of Biofuels. Edward Elgar, Cheltenham, UK.
Das, B.P., Roy, A.T., Dash, P., 2008. Effect of seedling age and submergence on chlorophyll
content of rice cultivars. Oryza 45 (2), 169 172.
Das, B.P., Dash, P., Roy, A.T., 2009. Role of total sugar and starch content of rice seedlings
at different ages in variable submergence tolerance. Oryza. 46 (4), 304 309.
Das, P.K., Das, B.P., Dash, P., 2017. Hexavalent chromium induced toxicity and its remedia-
tion using macrophytes. Pollut. Res. 36 (1), 92 98.
Das, P.K., Das, B.P., Dash, P., 2018. Role of plant species as hyper-accumulators in the
decontamination of hexavalent chromium contaminated soil. Indian J. Environ. Prot. 38
(12), 1016 1024.
De Gorter, H., Drabik, D., Just, D., 2015. The Economics of Biofuel Policies. Palgrave,
New York.
Dhaliwal, H.S., Singh, R.P., Kaur, H., 2011. Financial assessment of happy Seeder. Conserv.
Agric. News Lett. 17.