Page 37 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 37
16 Refining Biomass Residues for Sustainable Energy and Bioproducts
Anthraper, D., McLaren, J., Baroutian, S., Munir, M.T., Young, B.R., 2018. Hydrothermal
deconstruction of municipal solid waste for solid reduction and value production. J.
Clean. Prod. 201, 812 819.
Babu, G.L.S., Chouksey, S.K., Lakshmikanthan, P., 2012. Study of engineering properties of
municipal solid waste of Bangalore city. In: Proceedings of Indian Geotechnical
Conference.
Bridgwater, A.V., Peacocke, G.V.C., 2000. Fast pyrolysis processes for biomass. J. Renew.
Sustain. Energy 4, 1 73.
Carlson, T.R., Cheng, Y.T., Jae, J., Huber, G.W., 2011. Production of green aromatics and
olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci. 4, 145 161.
Eckenfelder, W.W., O’Connor, D.J., 2013. Biological Waste Treatment. Elsevier Science.
Eurostat, 2017. Generation of Waste by Waste Category, Hazardousness and NACE Rev. 2
Activity (WWW Document).
Gadkari, S., Fidalgo, B., Gu, S., 2017. Numerical investigation of microwave-assisted pyroly-
sis of lignin. Fuel Process. Technol. 156, 473 484.
Gawande, M., Shelke, S., Zboril, R., Varma, R., 2014. Microwave-assisted chemistry: syn-
thetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res.
47, 1338 1348.
Hietala, M., Varrio, K., Berglund, L., Soini, J., Oksman, K., 2018. Potential of municipal
solid waste paper as raw material for production of cellulose nanofibres. Waste Manage.
80, 319 326.
Lin, F., Waters, C.L., Mallinson, R.G., Lobban, L.L., Bartley, L.E., 2015. Relationships
between biomass composition and liquid products formed via pyrolysis. Front. Energy
Res. 3, 45.
Lin, J., Sun, S., Ma, R., Fang, L., Zhang, P., Qu, J., et al., 2018. Characteristics and reaction
mechanisms of sludge-derived bio-oil produced through microwave pyrolysis at differ-
ent temperatures. Energy Convers. Manage. 160, 403 410.
Lu, L., Namioka, T., Yoshikawa, K., 2011. Effects of hydrothermal treatment on characteris-
tics and combustion behaviors of municipal solid wastes. Appl. Energy 88, 3659 3664.
Martı ´nez, J.D., Puy, N., Murillo, R., Garcı ´a, T., Navarro, M.V., Mastral, A.M., 2013. Waste
tyre pyrolysis a review. J. Renew. Sustain. Energy 23, 179 213.
Mittal, K.M., 1996. Biogas Systems; Principles and Applications. New Age International (p)
Limited Publishers, New Delhi, India.
Mohanty, P., Pant, K.K., Naik, S.N., Das, L.M., Vasudevan, P., 2011. Fuel production from
biomass: Indian perspective for pyrolysis oil. J. Sci. Ind. Res. 70, 668 674.
Muldowney, J., Mounsey, J., Kinsella, L., 2013. Agriculture in the climate change negotia-
tions; ensuring that food production is not threatened. Animal: Int. J. Anim. Biosci. 7,
206 211.
Munir, M.T., Li, B., Boiarkina, I., Baroutian, S., Yu, W., Young, B.R., 2017. Phosphate
recovery from hydrothermally treated sewage sludge using struvite precipitation.
Bioresour. Technol. 239, 171 179.
Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., Dalai, A.K., 2014. Pathways of ligno-
cellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefin. 4,
157 191.
Nunes, L.J.R., Matias, J.C.D.O., Catala ˜o, J.P.D.S., 2017. Torrefaction of Biomass for Energy
Applications: From Fundamentals to Industrial Scale. Academic Press.
Soni, A., Patil, D., Argade, K., 2016. Municipal solid waste management. Procedia Environ.
Sci. 35, 119 126.