Page 427 - Refining Biomass Residues for Sustainable Energy and Bioproducts
P. 427
Agroindustry wastes: biofuels and biomaterials feedstocks for sustainable rural development 385
Gadde, B., Menke, C., Wassmann, R., 2009. Rice straw as a renewable energy source in
India, Thailand, and the Philippines: overall potential and limitations for energy contri-
bution and greenhouse gas mitigation. Biomass Bioenergy 33, 1532 1546.
Garg, V.K., Kumar, R., Gupta, R., 2004. Removal of malachite green dye from aqueous solu-
tion by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes
Pigm. 62 (1), 1 10.
Gonza ´lez-Garcı ´a, S., Moreira, M.T., Feijoo, G., 2010. Comparative environmental perfor-
mance of lignocellulosic ethanol from different feedstocks. Renew. Sustain. Energy
Rev. 14 (7), 2077 2085.
Grobe, K., 1994. Composter links up with food processor. Biocycle 35, 40.
Hiloidhari, M., Das, D., Baruah, D.C., 2014. Bioenergy potential from crop residue biomass
in India. Renew. Sustain. Energy Rev. 32, 504 512.
Itelima, J., Onwuliri, F., Onwuliri, E., OnyimbaI, Oforji, S., 2013. Bio-ethanol production
from banana, plantation and pineapple peels by simultaneous saccharification and fer-
mentation process. Int. J. Environ. Sci. Dev. 4 (2), 213 216.
Jiang, J.J., Tan, C.S., 2012. Biodiesel production from coconut oil in supercritical methanol
in the presence of cosolvent. J. Taiwan Inst. Chem. Eng. 43 (1), 102 107.
Jurgensen, L., Ehimen, E.A., Born, J., Holm-Nielsen, J.B., 2018. A combination anaerobic
digestion scheme for biogas production from dairy effluent-CSTR and ABR, and biogas
upgrading. Biomass Bioenergy 111, 241 247.
Kalaivanan, D., Hattab, K.O., 2008. Influence of enriched pressmud compost on soil chemi-
cal properties and yield of rice. Res. J. Microbiol. 3, 254 261.
Khan, N.A., Shaaban, M.G., Hassan, M.H.A., 2003. Removal of heavy metal using an inex-
pensive adsorbent. In: Proc. UM Research Seminar 2003 Organized by Institute of
Research Management and Consultancy (IPPP), University of Malaya, Kuala Lumpur.
Kim, M., Day, D.F., 2011. Composition of sugar cane, energy cane, and sweet sorghum
suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol.
38 (7), 803 807.
Kim, S., Dale, B.E., 2004. Global potential bioethanol production from wasted crops and
crop residues. Biomass Bioenergy 26, 361 375.
Klass, D.L., 2004. Biomass for renewable energy and fuels. In: Cleveland, C.J. (Ed.),
Encyclopedia of Energy, vol. 1. Elsevier, San Diego, CA, pp. 193 212.
Kohli, K., Prajapati, R., Sharma, B.K., 2019. Bio-based chemicals from renewable biomass
for integrated biorefineries. Energies 12, 233. Available from: https://doi.org/10.3390/
en12020233.
Lal, R., 2005. World crop residues production and implications of its use as a biofuel.
Environ. Int. 31, 575 584.
Leff, B., Ramankutty, N., Foley, J.A., 2004. Geographic distribution of major crops across
the world. Global Biogeochem. Cycles 18, GB1009. Available from: https://doi.org/
10.1029/2003GB002108.
Li, X., Mupondwa, E., 2016. Production and value-chain integration of Camelina sativa as a
dedicated biorenergy feedstock in the Canadian prairies. In: 24th European Biomass
Conference & Exhibition, Amsterdam, The Netherlands.
Loh, C.W., Fakhru’l-Razi, A., Hassan, M.A., Karim, M.I.A., 1999. Production of organic
acids from kitchen wastes. Artif. Cells Blood Substitutes Biotechnol. 27 (5 6),
455 459.
Lo ´pez-Cano, I., Cayuela, M., Mondini, C., Takaya, C., Ross, A., Sa ´nchez-Monedero, M.,
2018. Suitability of different agricultural and urban organic wastes as feedstocks for the