Page 50 - Rock Mechanics For Underground Mining
P. 50

STRESS AND INFINITESIMAL STRAIN

                                        then

                                                                         1
                                                                    du x =   xy dy
                                                                         2
                                                                                                      (2.31)
                                                                         1
                                                                    du y =   xy dx
                                                                         2
                                        Similarly, displacements due to pure shear of the element in the y, z and z, x planes
                                        are given by
                                                                          1
                                                                    du y =   yz dz
                                                                          2
                                                                                                      (2.32)
                                                                          1
                                                                    du z =   yz dy
                                                                          2
                                        and
                                                                          1
                                                                    du z =   zx dx
                                                                          2
                                                                                                      (2.33)
                                                                          1
                                                                    du x =   zx dz
                                                                          2
                                          The total displacement components due to all modes of infinitesimal strain are
                                        obtained by addition of equations 2.30, 2.31, 2.32 and 2.33, i.e.
                                                                                  1
                                                                         1
                                                            du x = ε xx dx +   xy dy +   zx dz
                                                                         2        2
                                                                  1
                                                                                  1
                                                            du y =   xy dx + ε yy dy +   yz dz
                                                                  2               2
                                                                  1
                                                                          1
                                                            du z =   zx dx +   yz dy + ε zz dz
                                                                  2       2
                                        These equations may be written in the form
                                                                         1     1
                                                         ⎡    ⎤   ⎡                ⎤ ⎡   ⎤
                                                           du x    ε xx     xy    zx  dx
                                                                         2     2
                                                                  ⎢ 1          1
                                                         ⎢    ⎥                    ⎥ ⎢   ⎥           (2.34a)
                                                         ⎣ du y ⎦ = ⎣   xy  ε yy
                                                                    2          2    yz⎦ ⎣ dy ⎦
                                                                    1    1
                                                           du z        zx    yz  ε zz  dz
                                                                    2    2
                                        or

                                                                   [d  ] = [ ][dr]                   (2.34b)
                                        where [ ] is the strain matrix.
                                          Since

                                                                 [d ] = [d  ] + [d  ]

                                        equations 2.25a, 2.29a and 2.34a yield
                                                                       1     1
                                           ⎡               ⎤   ⎡                ⎤   ⎡                ⎤
                                             ∂u x  ∂u x  ∂u x                          0   −  z      y
                                                                 ε xx     xy    zx
                                                                       2     2
                                           ⎢  ∂x   ∂y   ∂z  ⎥  ⎢                ⎥   ⎢                ⎥
                                           ⎢               ⎥   ⎢                ⎥   ⎢                ⎥
                                           ⎢               ⎥   ⎢                ⎥   ⎢                ⎥
                                           ⎢ ∂u y  ∂u y  ∂u y ⎥  ⎢ 1         1  ⎥   ⎢                ⎥
                                                           ⎥ = ⎢   xy  ε yy  2    yz⎥ + ⎢   z  0  −  x⎥
                                                                 2
                                           ⎢ ∂x    ∂y   ∂z ⎥   ⎢                ⎥   ⎢                ⎥
                                           ⎢
                                           ⎢               ⎥   ⎢                ⎥   ⎢                ⎥
                                           ⎣ ∂u z  ∂u z  ∂u z  ⎦  ⎣             ⎦   ⎣                ⎦
                                                                 1     1
                                             ∂x    ∂y   ∂z       2    zx  2    yz  ε zz  −  y    x  0
                                          Equatingcorrespondingtermsontheleft-handandright-handsidesofthisequation,
                                        32
   45   46   47   48   49   50   51   52   53   54   55