Page 197 - Schaum's Outline of Differential Equations
P. 197

180             NUMERICAL METHODS   FOR  SOLVING DIFFERENTIAL  EQUATIONS        [CHAP. 19




                                                 Table 19-2

                                    Method:   MODIFIED EULER'S METHOD
                                                  2
                                    Problem:  / = y  + 1 ; y(0) = 0
                                              ft = 0.1
                               x n
                                                                True  solution
                                        py n          y n        Y(x)  = tan x
                              0.0        —         0.0000000      0.0000000

                              0.1     0.1000000    0.1005000      0.1003347
                              0.2     0.2015100    0.2030353      0.2027100
                              0.3     0.3071577    0.3098138      0.3093363

                              0.4     0.4194122    0.4234083      0.4227932

                              0.5     0.5413358    0.5470243      0.5463025
                              0.6     0.6769479    0.6848990      0.6841368
                              0.7     0.8318077    0.8429485      0.8422884

                              0.8     1.0140048    1.0298869      1.0296386

                              0.9     1.2359536    1.2592993      1.2601582
                               1.0    1.5178828    1.5537895      1.5574077





                            1
         19.3.  Find y(l.6)  for y  = 2x; y(l)  = 1 using the modified Euler's  method with h = 0.2.
                  Here/0, y) = 2x,x 0 = 1, and y a  = 2. From  Eq.  (19.2) we have  y' Q =/(!,  2) = 2(1) = 2. Then using (19.4)  and
               (19.3),  we compute
























                                                           2
                                   2
              The  true  solution is  Y(x)=x ;  hence  7(1.6) = y(l.6)  = (1.6)  = 2.56. Since  the  true  solution is  a  second-degree
               polynomial and the modified Euler's method is a second-order method, this agreement is expected.
   192   193   194   195   196   197   198   199   200   201   202