Page 226 - Schaum's Outline of Differential Equations
P. 226

CHAP. 20]            SOLVING SECOND-ORDER   DIFFERENTIAL EQUATIONS                    209























         Continuing in this manner, we generate Table  20-8.



                                                 Table 20-8

                        Method:   MILNE'S METHOD

                        Problem:  f-y = x; y(0) = 0, /(O) = 1
                                            h = 0.l
                   x n
                                                                          True solution
                            py n        PZn        y n          z n     Y(x) = <?-e~ -x
                                                                                   x
                   0.0       —          —       0.0000000    1.0000000     0.0000000

                   0.1       —          —       0.1003333    1.0100083     0.1003335

                   0.2       —          —       0.2026717    1.0401335     0.2026720
                   0.3       —          —       0.3090401    1.0906769     0.3090406
                   0.4    0.4214983  1.1621433  0.4215045    1.1621445     0.4215047

                   0.5    0.5421838  1.2552500  0.5421903    1.2552517     0.5421906

                   0.6    0.6733000  1.3709276  0.6733071    1.3709300     0.6733072
                   0.7    0.8171597  1.5103347  0.8171671    1.5103376     0.8171674
                   0.8    0.9762043  1.6748655  0.9762120    1.6748693     0.9762120

                   0.9    1.1530250  1.8661678  1.1530332    1.8661723     1.1530335
                   1.0    1.3503938  2.0861552  1.3504024    2.0861606     1.3504024




                                     Supplementary Problems


         20.15.  Reduce the initial-value problem y" + y = 0; y(G)  = 1, /(O) = 0 to system (20.1).
         20.16.  Reduce the initial-value problem y"-y = x; y(Q)  = 0, /(O) = -1  to system  (20.1).
   221   222   223   224   225   226   227   228   229   230   231