Page 226 - Schaum's Outline of Differential Equations
P. 226
CHAP. 20] SOLVING SECOND-ORDER DIFFERENTIAL EQUATIONS 209
Continuing in this manner, we generate Table 20-8.
Table 20-8
Method: MILNE'S METHOD
Problem: f-y = x; y(0) = 0, /(O) = 1
h = 0.l
x n
True solution
py n PZn y n z n Y(x) = <?-e~ -x
x
0.0 — — 0.0000000 1.0000000 0.0000000
0.1 — — 0.1003333 1.0100083 0.1003335
0.2 — — 0.2026717 1.0401335 0.2026720
0.3 — — 0.3090401 1.0906769 0.3090406
0.4 0.4214983 1.1621433 0.4215045 1.1621445 0.4215047
0.5 0.5421838 1.2552500 0.5421903 1.2552517 0.5421906
0.6 0.6733000 1.3709276 0.6733071 1.3709300 0.6733072
0.7 0.8171597 1.5103347 0.8171671 1.5103376 0.8171674
0.8 0.9762043 1.6748655 0.9762120 1.6748693 0.9762120
0.9 1.1530250 1.8661678 1.1530332 1.8661723 1.1530335
1.0 1.3503938 2.0861552 1.3504024 2.0861606 1.3504024
Supplementary Problems
20.15. Reduce the initial-value problem y" + y = 0; y(G) = 1, /(O) = 0 to system (20.1).
20.16. Reduce the initial-value problem y"-y = x; y(Q) = 0, /(O) = -1 to system (20.1).