Page 278 - Schaum's Outline of Differential Equations
P. 278

CHAP.  26]                   SOLUTIONS  BY MATRIX  METHODS                           261




               Thus,




               If  we define two new arbitrary constants  k^ = (3k 1 + k 2)/6  and k 4 = (3k±  -  k 2)/6,  then







                                     Supplementary Problems


                                                          A(
         Solve each of the following systems  by matrix methods.  Note that e  for the first  five  problems  is found in Problem 16.2,
              A(
         while e  for Problems  26.15 through 26.17 is given in Problem 16.3.
         26.9.  x + 2x -  Sx = 0; x(l)  = 1, i(l) = 0  26. 10.  x + 2x -  Sx = 4; x(0)  = 0,  jfc(O) = 0


         26.11.  x + 2x-Sx = 4;x(l)  = 0, i(l) = 0    26.12.  x + 2x-8x = 4;x(G)  = 1, i(0) = 2
         26.13.  x + 2x-8x = 9e-'; x(0)  = 0, i(0) = 0  26.14.  The system  of Problem  26.4,  using Eq. (26.2)

         26.15.  x + x = 0                            26. 16.  x + x = 0; x(2)  = 0,  x(2)  = 0

         26.17.  x + x = t;x(l)  = 0,x(l)  = l        26.18.  y-y-2y  = 0

                                                                       3
         26.19.  y-y-2y  = 0; y(0)  = 2, /(O) = 1     26.20.  y-y-2y  = e ';y(0)  = 2, /(O) = 1

         26.21.  y -  y -  2y = e ' 3  ; y(0)  = 1, /(O) = 2  26.22.  z + 9z + Uz  = -sint; z(0) = 0, z(0) = - 1
                                                                       9
         26.23.  x = - 4x + 6y                        26.24.  x + 5x -  12y = 0
               y = -3x  + 5y;                                y + 2x -  5y = 0;
               x(0)=3,y(0)  = 2                              ^(0) = 8, X°)= 3

         26.25. x-2y = 3                              26.26.  x = x + 2y
                         2
               y + y-X  = -t ;                               y = 4x  + 3y
               x(0) = 0,y(0) = -l

         26.27.  x  = 6t; x(0)  = 0,  x(0)  = 0 , x(0)  = 12  26.28.  x + y = 0
                                                             y + x  = 2e~'  ;
                                                             x(0) = 0, x(0) = - 2, y(0) = 0

         26.29.  x = 2x + 5y + 3,
               y = ~ x -  2y;
               x(0)  = 0,x(0)  = 0,y(0)  = l
   273   274   275   276   277   278   279   280   281   282   283