Page 38 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 38

CHAP. 2]                            SEQUENCES                                    29

                                                                                 1
                     2.11. If lim b n ¼ B 6¼ 0, prove there exists a number N such that jb n j > jBj for all n > N.
                                                                                 2
                             n!1
                              Since B ¼ B   b n þ b n ,we have:  (1) jBj @ jB   b n jþjb n j.
                                                                   1
                              Now we can choose N so that jB   b n j¼ jb n   Bj < jBj for all n > N, since lim b n ¼ B by hypothesis.
                                                                   2
                                               1
                                                             1
                              Hence, from (1), jBj < jBjþjb n j or jb n j > jBj for all n > N.  n!1
                                               2             2
                     2.12. If lim a n ¼ A and lim b n ¼ B, prove that lim a n b n ¼ AB.
                             n!1          n!1                n!1
                              We have, using Problem 2.10,
                                        ja n b n   ABj¼ja n ðb n   BÞþ Bða n   AÞj @ ja n jjb n   BjþjBjja n   Aj  ð1Þ
                                                                    @ Pjb n   BjþðjBjþ 1Þja n   Aj
                              But since lim a n ¼ A and lim b n ¼ B,given any  > 0wecan find N 1 and N 2 such that
                                     n!1         n!1

                                        jb n   Bj <  for all n > N 1  ja n   Aj <  for all n > N 2
                                                2P                      2ðjBjþ 1Þ
                                                     1
                                                        1
                              Hence, from (1), ja n b n   ABj <   þ   ¼   for all n > N, where N is the larger of N 1 and N 2 . Thus, the
                                                     2  2
                           result is proved.
                                                                     1   1         a n  A
                     2.13. If lim a n ¼ A and lim b n ¼ B 6¼ 0, prove  (a) lim  ¼ ,(b) lim  ¼ .
                                                                         B              B
                                                                 n!1 b n        n!1 b n
                             n!1          n!1
                           (a)We must show that for any given  > 0, we can find N such that

                                                   1
                                                       1    jB   b n j
                                                                <     for all n > N

                                                         ¼                                            ð1Þ
                                                       B
                                                   b n     jBjjb n j
                                                                                      2
                                                                                    1
                                  By hypothesis, given any  > 0, we can find N 1 ,suchthat jb n   Bj < B   for all n > N 1 .
                                                                                    2
                                                                             1
                                  Also, since lim b n ¼ B 6¼ 0, we can find N 2 such that jb n j > jBj for all n > N 2 (see Problem 11).
                                                                             2
                                          n!1
                                  Then if N is the larger of N 1 and N 2 ,wecan write (1)as
                                               1                B
                                                               1  2
                                                  1    jb n   Bj  2
                                                            <        ¼    for all n > N
                                                    ¼
                                                  B              1
                                               b n     jBjjb n j
                                                                 2
                                                              jBj  jBj
                              and the proof is complete.
                           (b)From part (a) and Problem 2.12, we have

                                                 a n        1             1     1  A
                                              lim  ¼ lim a n    ¼ lim a n   lim  ¼ A    ¼
                                              n!1 b n  n!1  b n  n!1  n!1 b n   B  B
                                  This can also be proved directly (see Problem 41).
                     2.14. Evaluate each of the following, using theorems on limits.
                                     2
                                   3n   5n         3   5=n    3 þ 0   3
                               lim         ¼ lim
                           ðaÞ      2                     2  ¼      ¼
                               n!1 5n þ 2n   6  n!1 5 þ 2=n   6=n  5 þ 0 þ 0  5
                                  (          3  )    (  3   2    )     (            2  )
                                            n          n þ n þ 2n         1 þ 1=n þ 2=n
                               lim  nðn þ 2Þ    ¼ lim             ¼ lim
                                    n þ 1  n þ 1
                           ðbÞ              2                2                       2
                               n!1                n!1 ðn þ 1Þðn þ 1Þ  n!1 ð1 þ 1=nÞð1 þ 1=n Þ
                                                    1 þ 0 þ 0
                                                             ¼ 1
                                                ¼
                                                  ð1 þ 0Þ ð1 þ 0Þ
                                                             p ffiffiffiffiffiffiffiffiffiffiffi
                                                                    p ffiffiffi
                                   ffiffiffiffiffiffiffiffiffiffiffi      ffiffiffiffiffiffiffiffiffiffiffi      n          1
                                  p      p ffiffiffi    p      p ffiffiffi
                                                                                    ffiffiffi ¼ 0
                                                              n þ 1 þ
                                                              ffiffiffiffiffiffiffiffiffiffiffi    ffiffiffiffiffiffiffiffiffiffiffi
                                                                     n              n
                           ðcÞ  lim ð n þ 1    n Þ¼ lim ð n þ 1    n Þ p  p ffiffiffi ¼ lim p  p
                              n!1             n!1                       n!1
                                                              n þ 1 þ        n þ 1 þ
   33   34   35   36   37   38   39   40   41   42   43