Page 43 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 43

34                                  SEQUENCES                              [CHAP. 2


                                                                     n
                          or                                S n ¼  að1   r Þ
                                                                 1   r
                                                     n    a
                              If jrj < 1; lim S n ¼ lim  að1   r Þ  by Problem 7:
                          ðaÞ                          ¼
                                             n!1 1   r  1   r
                                     n!1
                          (b)If jrj > 1, lim S n does not exist (see Problem 44).
                                     n!1
                     2.26. Prove that if a series converges, its nth term must necessarily approach zero.
                              Since S n ¼ u 1 þ u 2 þ     þ u n , S n 1 ¼ u 1 þ u 2 þ     þ u n 1 we have u n ¼ S n   S n 1 .
                              If the series converges to S,then
                                            lim u n ¼ lim ðS n   S n 1 Þ¼ lim S n   lim S n 1 ¼ S   S ¼ 0
                                           n!1    n!1           n!1    n!1

                                                                    1
                                                                   X
                                                                         n 1
                     2.27. Prove that the series 1   1 þ 1   1 þ 1   1 þ     ¼  ð 1Þ  diverges.
                                                                   n¼1
                          Method 1:
                                    n
                              lim ð 1Þ 6¼ 0, in fact it doesn’t exist. Then by Problem 2.26 the series cannot converge, i.e., it diverges.
                              n!1
                          Method 2:
                              The sequence of partial sums is 1; 1   1; 1   1 þ 1; 1   1 þ 1   1; ... i.e., 1; 0; 1; 0; 1; 0; 1; ... .Since this
                          sequence has no limit, the series diverges.

                     MISCELLANEOUS PROBLEMS

                                                   u 1 þ u 2 þ     þ u n
                     2.28. If lim u n ¼ l, prove that lim        ¼ l.
                                                         n
                            n!1                n!1
                                                             v 1 þ v 2 þ     þ v n
                              Let u n ¼ v n þ l.  We must show that lim   ¼ 0if lim v n ¼ 0.  Now
                                                                  n
                                                         n!1                  n!1
                                          v 1 þ v 2 þ     þ v n  v 1 þ v 2 þ     þ v P  v Pþ1 þ v pþ2 þ     þ v n
                                                n      ¼       n      þ        n
                          so that

                                                        jv 1 þ v 2 þ     þ v P j  jv Pþ1 jþjv Pþ2 jþ     þ jv n j
                                                      @
                                        v 1 þ v 2 þ     þ v n
                                                                      þ                              ð1Þ
                                              n               n                 n

                          Since lim v n ¼ 0, we can choose P so that jv n j < =2for n > P.  Then
                               n!1
                                                              =2 þ  =2 þ     þ  =2  ðn   PÞ =2
                                                            <                          <
                                         jv Pþ1 jþjv Pþ2 jþ     þ jv n j
                                                  n                  n       ¼    n     2            ð2Þ
                          After choosing P we can choose N so that for n > N > P,

                                                                       <
                                                         jv 1 þ v 2 þ     þ v P j
                                                               n        2                            ð3Þ
                              Then using (2) and (3), (1)becomes



                                                   v 1 þ v 2 þ     þ v n    <  ¼    for n > N
                                                       n        2  þ  2
                          thus proving the required result.
                                               2 1=n
                     2.29. Prove that lim ð1 þ n þ n Þ  ¼ 1.
                                    n!1
                                        2 1=n
                              Let ð1 þ n þ n Þ  ¼ 1 þ u n where u n A 0.  Now by the binomial theorem,
   38   39   40   41   42   43   44   45   46   47   48