Page 45 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 45

36                                  SEQUENCES                              [CHAP. 2


                                                                        4
                                 4   2n   2             p ffiffi           n þ 1              sin n
                          ðaÞ lim         ;   ðbÞ lim 2  1= n  ¼ 1;  ðcÞ lim  ¼1;  ðdÞ lim    ¼ 0:
                              n!1 3n þ 2  ¼  3   n!1                n!1  n 2           n!1 n
                     2.35.  Find the least positive integer N such that jð3n þ 2Þ=ðn   1Þ  3j <  for all n > N if  (a)   ¼ :01,
                          (b)   ¼ :001, (c)   ¼ :0001.
                          Ans.(a) 502, (b) 5002, (c) 50,002
                                                                               1
                     2.36.  Using the definition of limit, prove that lim ð2n   1Þ=ð3n þ 4Þ cannot be .
                                                                               2
                                                        n!1
                                         n
                     2.37.  Prove that lim ð 1Þ n does not exist.
                                   n!1
                     2.38.  Prove that if lim ju n j¼ 0then lim u n ¼ 0. Is the converse true?
                                    n!1          n!1
                                                                                                   p
                                                                                         2
                                                                                     2
                     2.39.  If lim u n ¼ l,prove that  (a) lim cu n ¼ cl where c is any constant,  (b) lim u n ¼ l ,  (c) lim u n ¼ l  p
                            n!1                  n!1          ffiffi                 n!1           n!1
                                                            p
                                                        ffiffiffiffiffi
                          where p is a positive integer,  (d) lim  p u n ¼  l; l A 0.
                                                    n!1
                     2.40.  Give a direct proof that lim a n =b n ¼ A=B if lim a n ¼ A and lim b n ¼ B 6¼ 0.
                                            n!1            n!1         n!1
                                                        2 1=n
                                                                      3 n
                     2.41.  Prove that  (a) lim 3 1=n  ¼ 1,  (b) lim      ¼ 1,  (c) lim      ¼ 0.
                                                        3             4
                                      n!1           n!1            n!1
                                             n
                     2.42.  If r > 1, prove that lim r ¼1,carefully explaining the significance of this statement.
                                         n!1
                                              n
                     2.43.  If jrj > 1, prove that lim r does not exist.
                                          n!1
                     2.44.  Evaluate each of the following, using theorems on limits:
                                                         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                            2
                                  4   2n   3n 2            3n   5n þ 4            p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                               lim                 ðcÞ lim                           2
                                    2n þ n                  2n   7
                          ðaÞ        2                                      ðeÞ lim ð n þ n   nÞ
                              n!1                     n!1                      n!1
                                  r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                           ffiffiffi
                                      p ffiffiffi p                  n     2n
                                  3  ð3    nÞð n þ 2Þ      4   10   3   10         n   n 1=n
                               lim                 ðdÞ lim
                                       8n   4         n!1 3   10  þ 2   10
                          ðbÞ                                n 1     2n 1  ð f Þ lim ð2 þ 3 Þ
                              n!1                                              n!1
                                                       ffiffiffi
                          Ans:  ðaÞ  3=2;  ðbÞ  1=2;  ðcÞ  3=2;  ðdÞ  15;  ðeÞ 1=2;  ð f Þ 3
                                                      p
                     BOUNDED MONOTONIC SEQUENCES
                     2.45.  Prove that the sequence with nth term u n ¼  p ffiffiffi n=ðn þ 1Þ (a)is monotonic decreasing, (b)is bounded below,
                          (c)is bounded above,  (d) has a limit.
                                 1     1     1         1
                     2.46.  If u n ¼  þ   þ    þ     þ   ,prove that lim u n exists and lies between 0 and 1.
                                1 þ n  2 þ n  3 þ n  n þ n        n!1
                                   ffiffiffiffiffiffiffiffiffiffiffiffiffi                 p ffiffiffi
                                 p
                     2.47.                                   1     5Þ.
                                                             2
                                   u n þ 1, u 1 ¼ 1, prove that lim u n ¼ ð1 þ
                          If u nþ1 ¼
                                                      n!1
                                  1
                     2.48.  If u nþ1 ¼ ðu n þ p=u n Þ where p > 0 and u 1 > 0, prove that lim u n ¼  p ffiffiffi p.  Show how this can be used to
                          determine  2 ffiffiffip 2.                       n!1
                     2.49.  If u n is monotonic increasing (or monotonic decreasing), prove that S n =n, where S n ¼ u 1 þ u 2 þ     þ u n ,is
                          also monotonic increasing (or monotonic decreasing).
                     LEAST UPPER BOUND, GREATEST LOWER BOUND, LIMIT SUPERIOR, LIMIT INFERIOR
                     2.50.  Find the l.u.b., g.l.b., lim sup (lim), lim inf (lim) for each sequence:
                                             n
                                1
                                   1 1
                          (a)  1; ;   ; ; .. . ; ð 1Þ =ð2n   1Þ; .. .              n 1 ð2n   1Þ; ...
                                3  5 7                           ðcÞ 1;  3; 5;  7; ... ; ð 1Þ
                          (b)  2  3 4  5     nþ1 ðn þ 1Þ=ðn þ 2Þ; .. .  ðdÞ 1; 4; 1; 16; 1; 36; .. . ; n 1þð 1Þn ; ...
                                     6
                                4 5
                             3  ;   ; ;   ; .. . ; ð 1Þ
   40   41   42   43   44   45   46   47   48   49   50