Page 44 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 44

CHAP. 2]                            SEQUENCES                                    35


                                            2        n         nðn   1Þ  2  nðn   1Þðn   2Þ  3  n
                                                                                   u n þ     þ u n
                                                                 2!          3!
                                      1 þ n þ n ¼ð1 þ u n Þ ¼ 1 þ nu n þ  u n þ
                                                                           2
                                          2     nðn   1Þðn   2Þ  3  3    6ðn þ nÞ
                                                    3!                nðn   1Þðn   2Þ
                              Then 1 þ n þ n > 1 þ        u n or 0 < u n <       :
                                        3
                                                                          2 1=n
                              Hence, lim u n ¼ 0 and  lim u n ¼ 0:  Thus  lim ð1 þ n þ n Þ  ¼ lim ð1 þ u n Þ¼ 1:
                                    n!1          n!1            n!1            n!1
                                       a n
                     2.30. Prove that lim  ¼ 0 for all constants a.
                                    n!1 n!
                                                                n
                              The result follows if we can prove that lim  jaj  ¼ 0 (see Problem 2.38).  We can assume a 6¼ 0.
                                      n                    n!1 n!
                                              u n
                                     jaj          jaj
                                       . Then       .If n is large enough, say, n > 2jaj, and if we call N ¼½2jajþ 1Š, i.e., the
                                     n!      u n 1  n
                              Let u n ¼         ¼
                           greatest integer @ 2jajþ 1, then
                                                     u Nþ1  1 u Nþ2  1  u n  1
                                                         < ;    < ; .. . ;  <
                                                      u N  2 u Nþ1  2  u n 1  2
                                                             1 n N
                                                                         1 n N
                                                         u n
                              Multiplying these inequalities yields  <  2  or u n <  2  u N :
                                                         u N
                                        n N
                                      1
                              Since lim    ¼ 0(using Problem 2.7), it follows that lim u n ¼ 0.
                                  n!1 2                                 n!1
                                                 Supplementary Problems
                     SEQUENCES
                     2.31.  Write the first four terms of each of the following sequences:
                                           (      )       (      )       (              )
                                 p ffiffiffi         nþ1            n 1                n 2n 1
                                 n          ð 1Þ           ð2xÞ              ð 1Þ x              cos nx
                                    ;              ;              ;                      ;             :
                           ðaÞ          ðbÞ            ðcÞ      5     ðdÞ                    ðeÞ  2  2
                               n þ 1          n!                                                 x þ n
                                                           ð2n   1Þ        1   3   5    ð2n   1Þ
                                   p ffiffiffi p ffiffiffi p ffiffiffi p ffiffiffi   2  3
                                    1  2   3  4       1 2x 4x  8x       cos x  cos 2x  cos 3x  cos 4x
                           Ans:  ðaÞ  ;  ;  ;     ðcÞ  ;  ;   ;      ðeÞ     ;     ;      ;
                                                                                     2
                                                                                           2
                                                                         2
                                                                               2
                                   2   3  4  5        1 5  3 5  5 5  7 5  x þ 1 2  x þ 2 2  x þ 3 2  x þ 4 2
                                   1   1 1   1         x  x 3   x 5  x 7
                                        ;               ;   ;     ;
                               ðbÞ  ;      ;      ðdÞ
                                   1!  2! 3!  4!      1  1   3 1   3   5 1   3   5   7
                     2.32.  Find a possible nth term for the sequences whose first 5 terms are indicated and find the 6th term:
                                1 3  5 7  9
                                 ; ;  ;  ;  ; .. .  ðbÞ 1; 0; 1; 0; 1; ...  2 ; 0; ; 0; ; ...
                                                                         3
                                                                             4
                               5  8 11 14 17
                           ðaÞ                                     ðcÞ  3  4  5
                                      n                  n                  n
                           Ans:  ðaÞ  ð 1Þ ð2n   1Þ  ðbÞ  1  ð 1Þ  ðcÞ  ðn þ 3Þ 1  ð 1Þ
                                                      2                  2

                                     ð3n þ 2Þ                   ðn þ 5Þ
                     2.33.  The Fibonacci sequence is the sequence fu n g where u nþ2 ¼ u nþ1 þ u n and u 1 ¼ 1, u 2 ¼ 1. (a)Find the first 6
                                                                                      ffiffiffi
                                                                                   n
                                                                               n
                                                                                                      ffiffiffi
                                                                                     p
                                                                                                1
                           terms of the sequence.  (b) Show that the nth term is given by u n ¼ða   b Þ= 5, where a ¼ ð1 þ  p 5Þ,
                                                                                                2
                              1   p ffiffiffi 5Þ.
                              2
                           b ¼ ð1
                           Ans.  (a)1; 1; 2; 3; 5; 8
                     LIMITS OF SEQUENCES
                     2.34.  Using the definition of limit, prove that:
   39   40   41   42   43   44   45   46   47   48   49