Page 46 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 46

CHAP. 2]                            SEQUENCES                                    37


                           Ans.  (a)  1 ;  1; 0; 0 ðbÞ 1;  1; 1;  1         (d) none, 1; þ1; 1
                                  3                     ðcÞ none, none, þ1,  1
                     2.51.  Prove that a bounded sequence fu n g is convergent if and only if lim u n ¼ lim u n .

                     INFINITE SERIES
                                               1
                                              X    n
                     2.52.  Find the sum of the series  2  .  Ans.  2
                                                 3
                                              n¼1
                                  1
                                 X     n 1  n
                     2.53.  Evaluate     =5 .  Ans.  1
                                                  6
                                    ð 1Þ
                                  n¼1
                                    1    1    1   1       X     1               1     1   1
                                                           1
                     2.54.  Prove that                             ¼ 1.  Hint:
                                   1   2  þ  2   3  þ  3   4  þ  4   5  þ      ¼    ¼  n    n þ 1
                                                           n¼1  nðn þ 1Þ      nðn þ 1Þ
                     2.55.  Prove that multiplication of each term of an infinite series by a constant (not zero) does not affect the
                           convergence or divergence.

                                             1  1     1                            1  1     1
                     2.56.  Prove that the series 1 þ þ þ     þ þ     diverges.  Hint: Let S n ¼ 1 þ þ þ     þ . Then prove
                                             2  3     n                            2    3   n
                                       1
                           that jS 2n   S n j > ,giving a contradiction with Cauchy’s convergence criterion.
                                       2
                     MISCELLANEOUS PROBLEMS
                     2.57.  If a n @ u n @ b n for all n > N, and lim a n ¼ lim b n ¼ l,prove that lim u n ¼ l.
                                                    n!1    n!1              n!1
                     2.58.  If lim a n ¼ lim b n ¼ 0, and   is independent of n,prove that lim ða n cos n  þ b n sin n Þ¼ 0.  Is the result
                            n!1    n!1                                  n!1
                           true when   depends on n?
                                         n
                                                                                           1
                                 1
                     2.59.  Let u n ¼ f1 þð 1Þ g, n ¼ 1; 2; 3; ... .  If S n ¼ u 1 þ u 2 þ     þ u n ,prove that lim S n =n ¼ .
                                 2                                                         2
                                                                                  n!1
                     2.60.  Prove that  (a) lim n 1=n  ¼ 1,  (b) lim ða þ nÞ  p=n  ¼ 1 where a and p are constants.
                                       n!1           n!1
                     2.61.  If lim ju nþ1 =u n j¼jaj < 1, prove that lim u n ¼ 0.
                            n!1                       n!1
                                               p n
                     2.62.  If jaj < 1, prove that lim n a ¼ 0 where the constant p > 0.
                                          n!1
                                      n
                                     2 n!
                     2.63.  Prove that lim  ¼ 0.
                                      n n
                     2.64.  Prove that lim n sin 1=n ¼ 1.  Hint: Let the central angle,  ,ofa circle be measured in radians. Geome-
                                   n!1
                           trically illustrate that sin         tan  ,0        .
                              Let   ¼ 1=n.  Observe that since n is restricted to positive integers, the angle is restricted to the first
                           quadrant.
                                                                                 1
                                                                                       5Þ.
                     2.65.  If fu n g is the Fibonacci sequence (Problem 2.33), prove that lim u nþ1 =u n ¼ ð1 þ  p ffiffiffi
                                                                                 2
                                                                      n!1
                     2.66.  Prove that the sequence u n ¼ð1 þ 1=nÞ nþ1 , n ¼ 1; 2; 3; .. . is a monotonic decreasing sequence whose limit
                           is e.  [Hint: Show that u n =u n 1 @ 1:Š
                     2.67.  If a n A b n for all n > N and lim a n ¼ A, lim b n ¼ B,prove that A A B.
                                                n!1      n!1
                     2.68.  If ju n j @ jv n j and lim v n ¼ 0, prove that lim u n ¼ 0.
                                        n!1              n!1

                                      1    1  1      1
                     2.69.  Prove that lim             ¼ 0.
                                              3
                                   n!1 n  1 þ þ þ     þ  n
                                           2
   41   42   43   44   45   46   47   48   49   50   51