Page 27 - Schaum's Outline of Theory and Problems of Applied Physics
P. 27

12                                    USEFUL MATH                                 [CHAP. 1



         1.9. A square foot contains approximately
              (a) 144 cm 2  (c) 929 cm 2
              (b) 366 cm 2  (d) 1000 cm 2

        1.10. A week contains approximately
                        4
                                         5
              (a)1.0 × 10 s   (c)6.05 × 10 s
                         4
                                        6
              (b)6.05 × 10 s  (d)2.6 × 10 s

                                     Supplementary Problems


         1.1. Remove the parentheses from the following, and combine like terms:
              (a) a + (b + c − d)  (f) b − 3(b + 3)
              (b) a − (b + c − d)  (g)2a − 3b − 4(a − 2b)
              (c) a + 2(b − 4)  (h)3(a + b) − 3(a + 2b)
              (d) a − 2(b − 4)  (i)2(a + b) − 3(a − b) + 4(a + 2b − c)
              (e)  b + 3(b + 3)  (j)5(a + b + c) − 5(a − b − c)

         1.2. Evaluate the following:
                  3(x + y)
              (a)           when  x = 5 and  y =−2
                    2
                   1      1
              (b)      −         when  x = 3 and  y = 2
                  x − y  x + y
                   4xy
              (c)      + 5    when  x = 1 and  y =−2
                  y + 3x
                  x + y   z
              (d)      +         when  x =−2,  y = 2,  and  z = 4
                   2z    x − y
                  x + z  xy
              (e)     −       when  x = 2,  y = 8,  and  z = 10
                   y     2
                  3(x + 7)
              (f)           when  x = 3 and  y =−6
                   y + 2
                  5(3 − x)
              (g)           when  x =−5 and   y = 7
                  2(x + y)
                   2
                  x + y  2  z
              (h)       +         when  x =−2, y = 2,  and  z = 4
                    2z    x − y
                  (x + z) 2  xy
              (i)       −       when x = 2, y = 8,  and  z = 10
                    y      2
         1.3. Solve each of the following equations for x:
                  4x − 35           (d)  2x − 32 = 0                  x + y
                                          4
              (a)       = 9(1 − x)                             (h)  z =
                    3               (e)  3x = 6x                      x − y
                                          2
                  3x − 42           (f)  (x + 3)(x − y) = z + x 2  x   4
                                                      2
              (b)       = 2(7 − x)       √                     (i)   =
                    9                                              y   z
                                    (g)  y 2x = 12
                   3
              (c)  x + 27 = 0
   22   23   24   25   26   27   28   29   30   31   32