Page 315 - Schaum's Outline of Theory and Problems of Applied Physics
P. 315

300                             DIRECT-CURRENTCIRCUITS                           [CHAP. 25
























                                                    Fig. 25-11

              We now solve this equation and the first loop equation for I 1 , set the two expressions for I 1 equal, and then solve
              for I:
                                         IR − V e,1           V e,2 − IR − Ir 2
                                     I 1 =          and   I 1 =
                                            r 1                    r 2
                                             IR − V e,1  V e,2 − IR − Ir 2
                                                     =
                                               r 1          r 2
                                          I (Rr 2 + Rr 1 + r 2 r 1 ) = V e,2 r 1 + V e,1 r 2
                                                  (8V)(0.5  ) + (6V)(0.6  )
                            V e,2 r 1 + V e,1 r 2
                        I =              =                                      = 0.673 A
                           Rr 2 + Rr 1 + r 2 r 1  (10  )(0.6  ) + (10  )(0.5  ) + (0.6  )(0.5  )
        SOLVED PROBLEM 25.22

              Find the currents in the three resistors of the circuit shown in Fig. 25-12(a). The internal resistances of
              the emf sources are included in R 1 and R 3 .

                  We assume the current directions shown in the figure. Applying Kirchhoff’s first rule to junction a yields
                                                   I 3 = I 1 + I 2
              Next we analyze the two inner loops with the help of Kirchhoff’s second rule. Proceeding counterclockwise in loop
              1 yields

                                                 V e,1 = I 1 R 1 − I 2 R 2





















                                                    Fig. 25-12
   310   311   312   313   314   315   316   317   318   319   320