Page 172 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 172

CHAP.  31   LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS




                 Am.
                 (a)  x(r) = (1 - e-'  - te-'Mt)
                 (b)  x(t)  = -4-t)  -(l + t)e-'dt)
                 (c)  ~(t) (- 1 + e-'  + te-'Id-t)
                         =
                 (d) x(t) = e-2'(~os3t - f sin 3t)u(t)
                 (el  x(t)  = at sin 2tu(t)
                 (f)  x(t)=(- $e-2'+  Acos3t-t  &sin3t)u(t)


           3.50.  Using the Laplace transform, redo Prob. 2.46.
                 Hint:  Use  Eq. (3.21) and Table 3-1.


           3.51.  Using the Laplace transform, show that







                 (a)  Use Eq. (3.21) and Table 3-1.
                 (b)  Use Eqs. (3.18) and (3.21) and Table 3-1.



           3.52.  Using the Laplace transform, redo Prob. 2.54.
                 Hint:
                 (a)  Find  the system  function  H(s) by  Eq.  (3.32) and  take the inverse Laplace  transform  of
                     H(s).
                (6)  Find  the ROC of  H(s) and show that it does not  contain  the jo-axis.


          3.53.  Find  the output  y(t) of  the continuous-time  LTI  system with



                for the each of  the following inputs:

                (a)  x(t) = e-'u(t)
                (b) x(t) = e-'u(-t)

                Ans.
                (a)  y(r)  = (e-'-e-")u(t)
                (b)  y(t) = e-'u(-f)+e-  2'~(t)


          3.54.  The step response  of  an continuous-time  LTI  system  is given by  (1 - e-')u(t). For a  certain
                unknown  input  x(t), the output  y(t) is observed  to be  (2  - 3e-'  + e-3')u(r). Find  the  input
                x(t).
   167   168   169   170   171   172   173   174   175   176   177