Page 297 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 297

284              FOURIER ANALYSIS OF TIME SIGNALS AND SYSTEMS                  [CHAP.  5



           5.64.  Derive the harmonic form Fourier series representation (5.15) from the trigonometric Fourier
                 series representation (5.8).
                 Hint:  Rewrite a, cos kw,t  + b, sin kw,t  as

                                                     cos kw,t +     bk   ,/,  sin kw,t
                                                   ,/,
                                                                (4 + b:)
                 and use the trigonometric formula cod A - B) = cos A cos B + sin A sin B.


           5.65.  Show that the mean-square value of  a real  periodic signal  x(r) is the sum of  the mean-square
                 values of  its harmonics.
                   1
                 Hint:  Use Parseval's  identity (5.21) for the Fourier series and Eq. (5.168).

           5.66.  Show that  if


                 then





                 Hint:  Repeat the time-differentiation property (5.55).


           5.67.  Using  the differentiation  technique,  find  the  Fourier  transform  of  the triangular  pulse  signal
                 shown in  Fig. 5-38.
                             wd/2  ]
                           sin( wd/2)   2
                 Ar..Ad[














                                                -d    0      d          I
                                                  Fig. 5-38




           5.68.  Find the inverse Fourier transform of





                 Hint:  Differentiate Eq. (5.155) N  times with  respect  to (a).
   292   293   294   295   296   297   298   299   300   301   302