Page 436 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 436

CHAP. 71                        STATE SPACE ANALYSIS




             7.58.  A discrete-time LTI system is specified by  the difference equation
                                     y[n] +y[n - 11 - 6y[n - 21  = 2x[n - 11 +x[n - 21

                  Write the two canonical forms of  state representation  for the system.













            7.59.  Find A"  for






                  (a)  Using the Cayley-Hamilton  theorem method.
                  (b)  Using the diagonalization  method.

                              - 2(+)" + 30)"  6(f )" - 6(f )"
                  Am.  A"  =                  3($)" - 2(;)" I
                               - (i)" + (4)"

            7.60.  Find A"  for







                  (a)  Using the spectral decomposition method.
                  (b)  Using the z-transform method.
                             [(3)"         0                0
                             I      ;(2)" - ;(-3)"   j(2)" - j(-3)"
                  Am.  An=     0    f(2)"+ ;(-3)"    f(2)" - +(-3)"
                               0
            7.61.  Given a matrix







                  (a)  Find  the minimal  polynomial  m(A) of A.
                  (b)  Using the result from part (a), find An.
                  Ans.  (a)  m(A) = (A - 3XA + 3) = A'  - 9
   431   432   433   434   435   436   437   438   439   440   441