Page 112 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 112

CHAP.  31                  MULTIPLE  RANDOM  VARIABLES                            105



                                                       I
         3.27.  Find the conditional pmf's pylx(yj I xi) and pXIy(xi yj) for the bivariate r.v. (X, Y) of Prob. 3.15.
                   From the results of Prob. 3.15, we have
                                                         xi = 1, 2; yj = 1, 2, 3
                                                         otherwise
                                         px(xJ = +xi2   Xi  = 1, 2
                                         pAyj)=iyj    Yj=1,2,3
               Thus, by Eqs. (3.33) and (3.34),







                            1
               Note that PYlAyj xi) = py(yj) and pXl&  1 yj) = pX(xi), as must be the case since X and  Y are independent,
               as shown in Prob. 3.15.

         3.28.  Consider the bivariate r.v. (X, Y) of Prob. 3.1 7.
               (a)  Find the conditional pdf's f&(y I x) and fxl,(x  1 y).
                                  I
               (b)  Find P(0 < Y < ) X  = 1).
               (a)  From the results of  Prob. 3.17, we have
                                                          o<x<2,o<y<2
                                                          otherwise
                                          fx(x) = t(x + 1)   0 < x < 2
                                          fdy) = b(y + 1)   0 < Y < 2
                   Thus, by Eqs. (3.38) and (3.39),







               (b)  Using the results of part (a), we obtain





         3.29.  Find the conditional pdf's fy lx(y x) and fxl ,(x  ( y) for the bivariate r.v. (X, Y) of Prob. 3.18.
                                          (
                   From the results of Prob. 3.18, we have
                                                       O<x<l,O<y<l
                                                       otherwise
                                          fdx) = 2x   0 < x  < 1
                                          fv(y) = 2~   0 < Y < 1
               Thus, by Eqs. (3.38) and (3.39),
   107   108   109   110   111   112   113   114   115   116   117