Page 113 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 113

MULTIPLE  RANDOM  VARIABLES                       [CHAP  3



               Again note that fyldy I x) = fy(y) and fxldx I y) = fx(x), as must be the case since X and Y are independent,
               as shown in Prob. 3.18.

          3.30.  Find the conditional pdf's fylx(y I x) and fxly(x I y) for the bivariate r.v. (X, Y) of Prob. 3.20.
                   From the results of Prob. 3.20, we have
                                                    2   O<ylx<l
                                          fxy(x'   =  i  0   otherwise
                                             fx(x) = 2x     O<x<l
                                             fY(Y) = 2(1 - Y)   0 < Y  < 1
               Thus, by Eqs. (3.38) and (3.39),
                                                1
                                       fr,x(Y I x) = ;   y<x<l,O<x<l





          3.31.  The joint pdf of a bivariate r.v. (X, Y) is given by

                                                             x>O,y>O

                                                             otherwise
               (a)  Show that f,,(x,   y) satisfies Eq. (3.26).
               (b)  Find P(X > 1 I Y = y).
               (a)  We have














               (b)  First we must find the marginal pdf on Y.  By Eq. (3.31),






                   By Eq. (3.39), the conditional pdf of X is

                                                                 x>o,y>o
                                       fxlu(x  I Y) = - -
                                                                 otherwise
                   Then
   108   109   110   111   112   113   114   115   116   117   118