Page 149 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 149

142      FUNCTIONS  OF RANDOM  VARIABLES, EXPECTATION,  LIMIT  THEOREMS  [CHAP.  4





















                                                   Fig. 4-8

        4.26.  Let X and Y be two r.v.3 with joint pdf f,Ax,  y) and joint cdf F&,   y). Let W = min(X, Y).
              (a)  Find the cdf of  W.
              (b)  Find the pdf of  W if X and Y are independent.
              (a)  The region in the xy plane corresponding to the event {min(X, Y) I w) is shown as the shaded area in
                  Fig. 4-9. Then
                                 P(W I w)  = P((X I w)  u (Y I w)}
                                         = P(X 5 w) + P(Y I - P((X < w)  n (Y 5 w))
                                                          w)

              (b)  If  X and Y are independent, then


                  and differentiating with respect to w gives






















                                                   Fig. 4-9


        4.27.  Let X and Y be two r.v.'s with joint pdf f,&   y). Let



              Find f,,(r,   0) in terms off,&,   y).
   144   145   146   147   148   149   150   151   152   153   154