Page 151 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 151

144       FUNCTIONS  OF RANDOM  VARIABLES, EXPECTATION,  LIMIT  THEOREMS  [CHAP.  4



        FUNCTIONS  OF  N RANDOM  VARIABLES
        4.29.   Let  X,  Y,  and Z  be  independent  standard normal  r.v.'s.  Let  W = (X2 + Y2 + Z2)lI2. Find  the
              pdf of W.
                  We have



              and                    F,(W)= P(W I w) = P(X2 + Y2 + z2 < w2)




              where Rw = ((x, y, z): x2 + y2 + z2 I w2). Using spherical coordinates (Fig. 4-10), we have


                                           dx dy dz = r2 sin 8 dr d8 dq
                                                       e-r2/2 r 2  sin 8 dr dB dq
              and

                                         -              sin 8 d8 [e-.'12r2   dr
                                         - -& 5,'= dm



              Thus, the pdf of  W is




























                                          Fig. 4-10  Spherical coordinates.



        4.30.  Let XI, . . . , X,  be n independent r.v.'s  each with the identical pdf f (x). Let Z  = max(X,, . . . , X,).
              Find the pdf of 2.
                  The probability  P(z < Z  < z + dz) is equal to the probability that  one of  the r.v.'s  falls in (z, z + dz)
              and all others are less than z. The probability that one of  Xi (i = 1, . . . , n) falls in (z, z + dz) and all others
   146   147   148   149   150   151   152   153   154   155   156