Page 165 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 165

158       FUNCTIONS  OF RANDOM  VARIABLES, EXPECTATION,  LIMIT  THEOREMS  [CHAP.  4.




         4.68.  Let  Y be a Poisson r.v. with parameter I. Using the central limit theorem, derive approximation
               formula  :





                  We saw in Prob. 4.54  that if  XI, . . . , X,  are independent Poisson r.v.'s  Xi having parameter Ai, then
               Y = XI +  . . + X,  is also a Poisson r.v. with parameter 1 = 1, + . . . + 1,. Using this fact, we can view a
               Poisson r.v.  Y with parameter I as a sum of independent Poisson r.v.'s  Xi, i = 1, . . . , n, each with parameter
               1/n; that is,






               The central limit theorem then implies that the r.v. Z defined by



               is approximately normal and
                                                 P(Z I z) w @(z)
               Substituting Eq. (4.141) into Eq. (4.142) gives

                                       P(?    I z)  = P(Y I Jiz + I) iE Wz)





               Again, using a continuity correction, a slightly better approximation is given by










                                      Supplementary Problems


         4.69.   Let Y = 2X + 3. Find the pdf of  Y if X is a uniform r.v. over (-  1, 2).
               Am.  fy(y) = {i   l<y<7
                              otherwise

         4.70.   Let X be a r.v. with pdf fx(x). Let Y = I X I. Find the pdf of  Y in terms of f,(x).

               Ans.  fb)
                       =
                                        Y <o
         4.71.   Let Y = sin X, where X is uniformly distributed over (0, 2x). Find the pdf of Y
                         I'
               Ans.  fro) rrJm       -l<y<l
                       =
                         (0          otherwise
   160   161   162   163   164   165   166   167   168   169   170