Page 160 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 160

CHAP. 41  FUNCTIONS  OF RANDOM  VARIABLES,  EXPECTATION,  LIMIT  THEOREMS         153



         4.51.  Find the moment generating function of a normal r.v. N(p; a2).
                  If X is N(0; I), then from Prob. 4.1 (or Prob. 4.37), we see that  Y  = oX + p is N(p; 02), Then by setting
              a = a and b = p in Eq. (4.120) (Prob. 4.50) and using Eq. (4.1 l9), we get




         4.52.  Let XI, . . . , X,  be n independent r.v.'s  and let  the moment generating function of Xi be Mxi(t).
              Let Y  = X, + .  + X,.  Find the moment generating function of  Y.
                  By definition (4.40),






         4.53.  Show that if XI, . . . , X,  are independent Bernoulli r.v.'s  with  the parameter  p, then  Y = X, +
               . + X,  is a binomial r.v. with the parameters (n, p).
                  Using Eqs. (4.122) and (4.1 15), the moment generating function of  Y is




              which is the moment generating function of a binomial r.v. with parameters (n, p) [Eq.  (4.1 l6)J. Hence, Y is
              a binomial r.v. with parameters (n, p).

         4.54.  Show that if XI, . . . , X,  are independent Poisson r.v.'s  Xi having parameter Ai, then Y = X, +
               . . + X,  is also a Poisson r.v. with parameter 3, = A, +  .  + A,.
                  Using Eqs. (4.1 22) and (4.1 17), the moment generating function of  Y is




              which is the moment generating function of a Poisson r.v. with parameter 1. Hence, Y is a Poisson r.v. with
              parameter 1 = Xti = 1, +  + 1,.
                  Note that Prob. 4.15 is a special case for n = 2.

         4.55.  Show  that  if  XI, . . . , X,  are  independent  normal  r.v.'s  and  Xi = N(pi; ai2), then  Y  = XI +
               . . + X,  is also a normal r.v. with mean p = p1 +  . . + p, and variance a2 = aI2 +  - . + an2.
                  Using Eqs. (4.1 22) and (4.1 21), the moment generating function of  Y is




              which  is the moment  generating function of  a  normal  r.v.  with  mean  p  and  variance a2. Hence,  Y  is  a
              normal r.v. with mean p = p, +  -  + p,  and variance 02 = a12 + -  + on2.
                  Note that Prob. 4.18 is a special case for n  = 2 with pi = 0 and ai2 = 1.

         4.56.  Find the moment generating function of a gamma r.v.  Y with parameters (n, A).
                                             .
                                              .
                  From Prob. 4.33, we see that if  XI, . , X,  are independent exponential r.v.'s,  each with parameter A,
              then  Y = X, + . . + Xn is  a  gamma  r.v.  with  parameters  (n,  A).  Thus,  by  Eqs.  (4.122) and (4.118), the
              moment generating function of  Y is
   155   156   157   158   159   160   161   162   163   164   165