Page 260 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 260

CHAP. 71                         ESTIMATION  THEORY                               253



                 If X is uniformly distributed over (0, a), then from Eqs. (2.44), (2.45), and (4.98) of  Prob. 4.30, the pdf of
              Z  = max(X,, . . . , X,)  is




              Thus

              and                                lim E(A) = a
                                                 n+  w

              Next,




              and                               lim Var(A) = 0
                                                n-* w
              Thus, by Eqs. (7.7) and (7.8), A is a consistent estimator of parameter a.


        MAXIMUM-LIKELIHOOD ESTIMATION
        7.7.   Let  (XI, . . . , X,)  be  a random  sample of a binomial r.v.  X  with parameters  (m, p), where m  is
              assumed to be known and p unknown. Determine the maximum-likelihood estimator of p.
                 The likelihood function is given by [Eq. (2.36)]







              Taking the natural logarithm of the above expression, we get




              where


              and

              Setting dun LCp)]/dp  = 0, the maximum-likelihood estimate jML of' p is obtained as







              Hence, the maximum-likelihood estimator of p is given by
                                                  I   n    I



        7.8.   Let (XI, . . . , X,)  be a random sample of a Poisson r.v. with unknown parameter A.  Determine the
              maximum-likelihood estimator of A.
   255   256   257   258   259   260   261   262   263   264   265