Page 186 - Probability, Random Variables and Random Processes
P. 186

RANDOM  PROCESSES                            [CHAP 5



                   From Eq. (5.73), we can express X, as




               where Z, = X, = 0 and  Zi (i 2 1) are iid r.v.3 with
                                      P(Zi  = +1) = p   P(Z,= -l)=q=  l-p









                                                                   i + k
               Using Eqs. (5.74) and (5.75), we obtain
                                     R,(n,  m) = min(n, m) + [nm - min(n, m)](p - q)2
                                                m+(nm-m)(p-q)2     m<n
                                       Rx(n, m) =
                                                n + (nm - nKp - q)2   n < m
               Note that ifp  = q = 3, then
                                           Rx(n, m) = min(n, m)   n, m > 0

          5.12.  Consider the random process X(t) of Prob. 5.4; that is,

                                             X(t)=Ycosot      t2O
               where cu is a constant and Y is a uniform r.v. over (0, 1).
               (a)  Find E[X(t)].
               (b)  Find the autocorrelation function R,(t,  s) of X(t).
               (c)  Find the autocovariance function Kx(t, s) of X(t).
               (a)  From Eqs. (2.46) and (2.91), we have E(Y) = 4 and E(y2) = 4. Thus
                                       E[X(t)]  = E(Y cos ot) = E(Y) cos at = 4 cos ot
               (b)  By Eq. (5.7), we have
                                       R,(t,  s) = E[X(t)X(s)] = E(Y2 cos wt cos US)
                                             = E(Y~) cos wt cos US  = 3 cos ot cos US
               (c)  By Eq. @.lo), we have
                                        Kx(t, s) = Rdt, s) - ECX(t)lECX(s)l
                                              = 4 COS Ot COS  US - 3 cos ot cos os
                                              =   COS  Ot COS  US


          5.13.  Consider  a discrete-parameter  random process X(n) = {X,, n 2 1) where the Xis are iid r.v.'s
               with common cdf F,(x),  mean p, and variance a2.

               (a)  Find the joint cdf of X(n).
               (b)  Find the mean of X(n).
               (c)  Find the autocorrelation function Rdn, m) of X(n).
               (d)  Find the autocovariance function Kx(n, m) of X(n).
   181   182   183   184   185   186   187   188   189   190   191