Page 73 - Semiconductor For Micro- and Nanotechnology An Introduction For Engineers
P. 73

The Crystal Lattice System
                             The restriction to next-neighbor interactions and identical interatomic
                             force constants yields the following equations of motion when the
                             expressions (2.56) and (2.57) are inserted into the Lagrange equations
                                                 E
                                                 --- 2u
                                         mu˙˙ im  =  – (  im  –  u iM  –  u ( i 1)M )  (2.58a)
                                                                –
                                                 a
                                                  E
                                         Mu˙˙ iM  =  – (  iM  –  u (  i +  1)m  –  u )  (2.58b)
                                                  --- 2u
                                                                   im
                                                  a
                             At rest the atoms occupy the cell positions (due to identical static forces)
                                                ⁄
                             ( i 14)a   and  i +(  14)a  . Hence we choose an harmonic atom dis-
                                  ⁄
                               –
                             placement ansatz for each atom of the form
                                              1             1     
                                        u im  =  --------c exp   jkai –  --- –  ωt   (2.59a)
                                                           
                                                              4 
                                                 m
                                               m                    
                                              1              1     
                                       u iM  =  ---------c exp   jkai +  --- –  ωt   (2.59b)
                                                           
                                                               4 
                                                 M
                                              M                      
                             The second ansatz can be written in terms of u
                                                                  im
                                                  m   c M     ka 
                                           u   =  ----- ------ exp  j------ u     (2.60)
                                            iM    M c   m      2   im
                             Equations (2.59b) and (2.60) are now inserted into (2.58a). Eliminating
                             common factors and simplifying, we obtain an equation for the ampli-
                             tudes c  and c
                                   m     M

                                        2E  ω 2     2E      ka 
                                                              2 
                                       ----------- –  m   –  ------------cos  ------
                                       am            aM            c m
                                                                       =  0       (2.61)
                                        2E     ka    2E  2     c M
                                      –  -----------cos  ------  ------------ –  ω  M 
                                                2  
                                       am           aM
                             This is an eigensystem equation for  ω  , and its non-trivial solutions are
                             obtained by requiring the determinant of the matrix to be zero. Perform-
                             ing this, we obtain


                70           Semiconductors for Micro and Nanosystem Technology
   68   69   70   71   72   73   74   75   76   77   78