Page 143 -
P. 143
140 J.M. Galán et al.
Pavón, J. & Gómez-Sanz, J. (2003). Agent oriented software engineering with INGENIAS. In
V. Marik, J. Müller & M. Pechoucek (Eds.), Multi-agent systems and applications III, 3rd
international central and eastern European conference on multi-agent systems, CEEMAS.
(Lecture notes in artificial intelligence, 2691) (pp. 394–403); Berlin, Heidelberg: Springer.
Pignotti, E., Edwards, P., Preece, A., Polhill, J.G. & Gotts, N.M. (2005). Semantic support for
computational land-use modelling. Proceedings of the 5th international symposium on cluster
computing and the grid (CCGRID 2005) (pp. 840–847). Piscataway, NJ: IEEE Press.
Polhill, J. G. & Gotts, N. M. (2006, August 21–25). A new approach to modelling frameworks.
Proceedings of the first world congress on social simulation. (Vol. 1, pp. 215–222), Kyoto,
Japan.
Polhill, J. G., & Izquierdo, L. R. (2005). Lessons learned from converting the artificial stock
market to interval arithmetic. Journal of Artificial Societies and Social Simulation, 8(2). http://
jasss.soc.surrey.ac.uk/8/2/2.html.
Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2005). The ghost in the model (and other effects
of floating point arithmetic). Journal of Artificial Societies and Social Simulation, 8(1). http://
jasss.soc.surrey.ac.uk/8/1/5.html.
Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2006). What every agent based modeller should
know about floating point arithmetic. Environmental Modelling & Software, 21(3), 283–309.
Riolo, R. L., Cohen, M. D., & Axelrod, R. M. (2001). Evolution of cooperation without reciprocity.
Nature, 411, 441–443.
Sakoda, J. M. (1971). The checkerboard model of social interaction. Journal of Mathematical
Sociology, 1(1), 119–132.
Salvi, R. (2002). The Navier-Stokes equation: Theory and numerical methods. (Lecture notes in
pure and applied mathematics). New York: Marcel Dekker.
Sansores, C., & Pavón, J. (2005, November 14–18). Agent-based simulation replication: A model
driven architecture approach. In A. F. Gelbukh, A. de Albornoz, & H. Terashima-Marín (Eds.),
Proceedings of MICAI 2005: Advances in artificial intelligence, 4th Mexican international
conference on artificial intelligence. (Lecture notes in computer science, 3789) (pp. 244–253),
Monterrey, Mexico. Berlin, Heidelberg: Springer.
Sansores, C., Pavón, J., & Gómez-Sanz, J. (2006, July 25). Visual modeling for complex agent-
based simulation systems. In J. S. Sichman & L. Antunes (Eds.), Multi-agent-based simulation
VI, International workshop, MABS 2005, revised and invited papers. (Lecture notes in computer
science, 3891) (pp. 174–189), Utrecht, The Netherlands. Berlin, Heidelberg: Springer.
Sargent, R. G. (2003). Verification and validation of simulation models. In S. Chick, P. J. Sánchez,
D. Ferrin, & D. J. Morrice (Eds.), Proceedings of the 2003 winter simulation conference (pp.
37–48). Piscataway, NJ: IEEE.
Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2),
47–186.
Schelling, T. C. (1978). Micromotives and macrobehavior. New York: Norton.
Schmeiser, B. W. (2001, December 09–12). Some myths and common errors in simulation
experiments. In B. A. Peters, J. S. Smith, D. J. Medeiros, & M. W. Rohrer (Eds.), Proceedings
of the winter simulation conference (Vol. 1, pp. 39–46), Arlington, VA.
Takadama, K., Suematsu, Y. L., Sugimoto, N., Nawa, N. E., & Shimohara, K. (2003). Cross-
element validation in multiagent-based simulation: Switching learning mechanisms in agents.
Journal of Artificial Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/
6.html.
Taylor, A. J. (1983). The verification of dynamic simulation models. Journal of the Operational
Research Society, 34(3), 233–242.
Xu, J., Gao, Y. & Madey, G. (2003, April 13–15). A docking experiment: swarm and repast for
social network modeling. In Seventh annual swarm researchers conference (SwarmFest 2003.
Notre Dame, IN.
Yilmaz, L. (2006). Validation and verification of social processes within agent-based computational
organization models. Computational & Mathematical Organization Theory, 12(4), 283–312.