Page 205 -
P. 205

202                                                     N. David et al.

            David, N., Sichman, J. S., & Coelho, H. (2005). The logic of the method of agent-based simulation
              in the social sciences: Empirical and intentional adequacy of computer programs. Journal of
              Artificial Societies and Social Simulation, 8(4), 2. http://jasss.soc.surrey.ac.uk/8/4/2.html
            David, N., Caldas, J. C., & Coelho, H. (2010). Epistemological perspectives on simulation III.
              Journal of Artificial Societies and Social Simulation, 13(1). doi:10.18564/jasss.1591, http://
              jasss.soc.surrey.ac.uk/13/1/14.html
            Dean, J. S., Gumerman, G. J., Epstein, J. M., Axtell, R. L., Swedlund, A. C., Parker, M. T., et al.
              (2000). Understanding Anasazi culture change through agent-based modeling. In T. A. Kohler
              & G. J. Gumerman (Eds.), Dynamics in human and primate societies: Agent-based modeling
              of social and spatial processes. Santa fe institute studies on the sciences of complexity (pp.
              179–205). New York/Oxford: Oxford University Press.
            Densmore, O. (2016). AgentScript. http://agentscript.org/
            Edmonds, B., & Hales, D. (2003). Replication, replication and replication: Some hard lessons from
              model alignment. Journal of Artificial Societies and Social Simulation, 6(4), 11. http://jasss.soc.
              surrey.ac.uk/6/4/11.html
            Edmonds, B. & Moss, S. (2005). From KISS to KIDS—an ‘anti-simplistic’ modelling approach.
              In: P. Davidsson, B. Logan, & K. Takadama (Eds.), Multi-agent and multi-agent-based
              simulation (Vol. 3415, pp. 130–144). Berlin/Heidelberg: Springer. doi:10.1007/978-3-540-
              32243-6_11. http://link.springer.com/10.1007/978-3-540-32243-6_11
            Epstein, J., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up.
              Washington, DC: Brookings Institution Press; Cambridge, MA: MIT Press.
            Evans, A., Heppenstall, A., & Birkin, M. (2017). Understanding simulation results. doi: https://
              doi.org/10.1007/978-3-319-66948-9_10.
            Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2015). Towards a standard model
              for research in agent-based modeling and simulation. PeerJ Computer Science, 1, e36.
              doi:10.7717/peerj-cs.36, https://peerj.com/articles/cs-36
            Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2017). Parallelization strategies for spatial
              agent-based models. International Journal of Parallel Programming, 45(3), 449–481.
            Fachada, N., Rodrigues, J., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2016). micompr: An
              R package for multivariate independent comparison of observations. The R Journal, 8(2),
              405–420. http://journal.r-project.org/archive/2016-2/fachada-rodrigues-lopes-etal.pdf
            Frank, U., & Troitzsch, K. G. (2005). Epistemological perspectives on simulation. Journal of
              Artificial Societies and Social Simulation, 8(4), 7. http://jasss.soc.surrey.ac.uk/8/4/7.html
            Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., Olmo, Rd., & López-Paredes, A.
              (2017). Checking simulations: Detecting and avoiding errors and artefacts. doi: https://doi.org/
              10.1007/978-3-319-66948-9_9.
            Gilbert, N. (2008). Agent-based models. Thousand Oaks, CA: SAGE. google-Books-ID:
              Z3cp0ZBK9UsC.
            Grimm, V., Polhill, G., & Touza, J. (2017). Documenting social simulation models: The ODD
              protocol as a standard. doi: https://doi.org/10.1007/978-3-319-66948-9_10.
            Gross, D., & Strand, R. (2000). Can agent-based models assist decisions on large-scale
              practical problems? A philosophical analysis. Complexity, 5(6), 26–33. doi:10.1002/1099-
              0526(200007/08)5:6<26::AID-CPLX6>3.0.CO;2-G,  http://onlinelibrary.wiley.com/doi/10.
              1002/1099-0526(200007/08)5:6<26::AID-CPLX6>3.0.CO;2-G/abstract
            Kratz, J., & Strasser, C. (2014). Data publication consensus and controversies. F1000Research, 3,
              94. doi:10.12688/f1000research.3979.3, http://f1000research.com/articles/3-94/v3
            Laird, J. E. (2012). The soar cognitive architecture. Cambridge: MIT Press.
            Law, A. M. (2015). Simulation modeling and analysis (5th ed.). New York: McGraw Hill Higher
              Education.
            Lee, J. S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid,
              I., et al. (2015). The complexities of agent-based modeling output analysis. Journal of Artificial
              Societies and Social Simulation, 18(4), 4.
            McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods
              for selecting values of input variables in the analysis of output from a computer code.
   200   201   202   203   204   205   206   207   208   209   210