Page 205 -
P. 205
202 N. David et al.
David, N., Sichman, J. S., & Coelho, H. (2005). The logic of the method of agent-based simulation
in the social sciences: Empirical and intentional adequacy of computer programs. Journal of
Artificial Societies and Social Simulation, 8(4), 2. http://jasss.soc.surrey.ac.uk/8/4/2.html
David, N., Caldas, J. C., & Coelho, H. (2010). Epistemological perspectives on simulation III.
Journal of Artificial Societies and Social Simulation, 13(1). doi:10.18564/jasss.1591, http://
jasss.soc.surrey.ac.uk/13/1/14.html
Dean, J. S., Gumerman, G. J., Epstein, J. M., Axtell, R. L., Swedlund, A. C., Parker, M. T., et al.
(2000). Understanding Anasazi culture change through agent-based modeling. In T. A. Kohler
& G. J. Gumerman (Eds.), Dynamics in human and primate societies: Agent-based modeling
of social and spatial processes. Santa fe institute studies on the sciences of complexity (pp.
179–205). New York/Oxford: Oxford University Press.
Densmore, O. (2016). AgentScript. http://agentscript.org/
Edmonds, B., & Hales, D. (2003). Replication, replication and replication: Some hard lessons from
model alignment. Journal of Artificial Societies and Social Simulation, 6(4), 11. http://jasss.soc.
surrey.ac.uk/6/4/11.html
Edmonds, B. & Moss, S. (2005). From KISS to KIDS—an ‘anti-simplistic’ modelling approach.
In: P. Davidsson, B. Logan, & K. Takadama (Eds.), Multi-agent and multi-agent-based
simulation (Vol. 3415, pp. 130–144). Berlin/Heidelberg: Springer. doi:10.1007/978-3-540-
32243-6_11. http://link.springer.com/10.1007/978-3-540-32243-6_11
Epstein, J., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up.
Washington, DC: Brookings Institution Press; Cambridge, MA: MIT Press.
Evans, A., Heppenstall, A., & Birkin, M. (2017). Understanding simulation results. doi: https://
doi.org/10.1007/978-3-319-66948-9_10.
Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2015). Towards a standard model
for research in agent-based modeling and simulation. PeerJ Computer Science, 1, e36.
doi:10.7717/peerj-cs.36, https://peerj.com/articles/cs-36
Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2017). Parallelization strategies for spatial
agent-based models. International Journal of Parallel Programming, 45(3), 449–481.
Fachada, N., Rodrigues, J., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2016). micompr: An
R package for multivariate independent comparison of observations. The R Journal, 8(2),
405–420. http://journal.r-project.org/archive/2016-2/fachada-rodrigues-lopes-etal.pdf
Frank, U., & Troitzsch, K. G. (2005). Epistemological perspectives on simulation. Journal of
Artificial Societies and Social Simulation, 8(4), 7. http://jasss.soc.surrey.ac.uk/8/4/7.html
Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., Olmo, Rd., & López-Paredes, A.
(2017). Checking simulations: Detecting and avoiding errors and artefacts. doi: https://doi.org/
10.1007/978-3-319-66948-9_9.
Gilbert, N. (2008). Agent-based models. Thousand Oaks, CA: SAGE. google-Books-ID:
Z3cp0ZBK9UsC.
Grimm, V., Polhill, G., & Touza, J. (2017). Documenting social simulation models: The ODD
protocol as a standard. doi: https://doi.org/10.1007/978-3-319-66948-9_10.
Gross, D., & Strand, R. (2000). Can agent-based models assist decisions on large-scale
practical problems? A philosophical analysis. Complexity, 5(6), 26–33. doi:10.1002/1099-
0526(200007/08)5:6<26::AID-CPLX6>3.0.CO;2-G, http://onlinelibrary.wiley.com/doi/10.
1002/1099-0526(200007/08)5:6<26::AID-CPLX6>3.0.CO;2-G/abstract
Kratz, J., & Strasser, C. (2014). Data publication consensus and controversies. F1000Research, 3,
94. doi:10.12688/f1000research.3979.3, http://f1000research.com/articles/3-94/v3
Laird, J. E. (2012). The soar cognitive architecture. Cambridge: MIT Press.
Law, A. M. (2015). Simulation modeling and analysis (5th ed.). New York: McGraw Hill Higher
Education.
Lee, J. S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid,
I., et al. (2015). The complexities of agent-based modeling output analysis. Journal of Artificial
Societies and Social Simulation, 18(4), 4.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.