Page 115 - Strategies and Applications in Quantum Chemistry From Molecular Astrophysics to Molecular Engineer
P. 115
100 W. KUTZELNIGG
Limitation to the term with l = 1 (which dominates for sufficiently small h and the
same phase averaging as in appendix D leads to [24,25]
For small h this goes as
The condition analogous to (D.11a) is
Like for the last example the optimum h goes as and the error as
The convergence is slower than for the same function with an equidis-
tant grid, but both h and ε are (on this level of approximation) independent of
i.e. essentially the same grid can be used for a very steep or a very flat Gaussian.
there is only a shift via the a-dependence of and
References
1. S.F. Boys, Proc. Roy. Soc. A200, 542 (1950)
2. R.N. Hill, J. Chem. Phys. 83, 1173 (1985)
3. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965)
4. F.B. v. Duijneveldt, IBM Tech. Res. Rep. RJ 945 (1971)
5. W.J. Hehre, R. Stewart and J.A. Pople, J. Chem. Phys 51, 2657 (1969)
6. C.M. Reeves, J. Chem. Phys. 39, 1 (1963)
K. Rudenberg, R.C. Raffinetti, R.D. Bardo in
Energy, Structure and Reactivity, Wiley, New York (1973)
R.C. Raffinetti, Int. J. Quant. Chem. Sym. 9, 289 (1975)
7. M.W. Schmidt and K. Ruedenberg, J. Chem. Phys. 71, 3951 (1979)
8. S. Huzinaga, M. Klobukwoski and H. Tatewaki, Can. J. Chem. 63, 1812 (1985)
9. J.D. Morgan and S. Haywood, unpublished, quoted in ref. 19
10. V. Mühlenkamp, Thesis, Bochum (1992)
11. D. Feller and E.R. Davidson, in Reviews in Computational Chemistry 1, K.B.
Lipkowitz and D.B. Boyd Eds., VCH, Weinheim (1990) p.1
12. H. Preuß, Z. Naturforsch. A11, 823 (1956), Mol. Phys. 8, 157 (1964)
13. J. L. Whitten, J. Chem. Phys. 39, 349 (1963)
14. B. Klahn and W.A. Bingel, Theor. Chim. Acta 44, 2 (1977)
15. B. Klahn and J.D. Morgan, ,7. Chem. Phys. 81, 410 (1984)
16. W. Klopper and W. Kutzelnigg, J. Mol. Struct. THEOCHEM. 135, 339 (1986)
17. W. Kutzelnigg, Theoret. Chim. Acta 68, 445 (1985)