Page 276 - Strategies and Applications in Quantum Chemistry From Molecular Astrophysics to Molecular Engineer
P. 276

VIBRATIONAL MODULATION EFFECTS ON EPR SPECTRA                          259
                        In the above equation, h  is the Planck constant, and c the speed of light. The mean values
                        at the absolute temperature T are obtained from the same equations by the of (j + 1/2) by





                        where K is the Boltzmann constant.From one side, Eq. (Al) shows that < s > and the cubic
                        force constants    have  opposite signs. On the other side, Figure 4 shows that in the


                        case of           and      have the same sign near the equilibrium structure. As a
                        result, the linear term in Eq. (8) is negative, thus counterbalancing the positive quadratic
                        term.


                        References

                        1.    E.  Fermi, Z. Physik, 60, 320 (1930).
                        2.    A.  Abragam and M.H.L. Pryce, Proc. Roy. Soc. (London) A205, 135 (1951).
                        3.    D. Papousek and M.R. Aliev, Molecular Vibrational-Rotational Spectra, Elsevier,
                              Amsterdam (1982).
                        4.    J.T.  Hougen,  P.R. Bunker, J.W.C. Johns, J. Mol.  Spectr. 52, 439  (1970).
                        5.    W.  Meyer, J. Chem. Phys. 51, 5149 (1969).
                        6.    S.Y. Chang, E.R. Davidson and G. Vincow, J. Chem. Phys. 52, 5596 (1970).
                        7.    T.A.  Claxton and N.A. Smith, Trans. Faraday Soc. 66, 1825 (1970).
                        8.    V. Barone, J. Douady, Y. Ellinger, R. Subra and F. Pauzat, Chem. Phys. Lett.
                              65, 542 (1979).
                        9.    M.  Peric,  R.  Runau, J. Romelt and S.D. Peyerimhoff, J. Mol. Spectr. 78, 309
                              (1979).
                        10.   Y. Ellinger, F. Pauzat, V. Barone, J. Douady and R. Subra, J. Chem. Phys. 72,
                              6390 (1980).
                        11.   D.M.  Chipman, J. Chem. Phys. 78, 3112 (1983).
                        12.   P.  Botschwinna,  J.  Flesh and W. Meyer, Chem. Phys. 74, 321 (1983).
                        13.   F. Pauzat, H. Gritli, Y. Ellinger and R. Subra, J. Phys. Chem. 88, 4581  (1984).
                        14.   F. Zerbetto and M.Z. Zgierski, Chem. Phys. 139, 503 (1989).
                        15.   V. Barone, P. Jensen and C. Minichino, J. Mol. Spectr. 154, 252 (1992).
                        16.   V.  Barone  and C. Minichino, J. Chem. Phys. (to be published).
                        17.   V. Barone, C.  Minichino H. Faucher, R. Subra and A. Grand, Chem. Phys.Lett.
                              (in press).
                        18.   M.J.  Frisch, M. Head-Gordon, G.W. Trucks, J.B. Foresman, H.B. Schlegel, K.
                              Raghavachari, M. Robb, J.S. Binkley, C. Gonzales, D.J. DeFrees, D.J. Fox,
                              R.A. Whiteside, R. Seeger, C.F. Melius, J. Baker, R.L. Martin, L.R. Kahn,
                              J.J.P. Stewart, S. Topiol and J.A. Pople, Gaussian 90, Gaussian Inc., Pittsburg
                              (1990).
                        19.   M.J.  Frisch,  G.W. Trucks, M. Head-Gordon, P.M.W. Gill, M.W. Wong, J.B.
                              Foresman, B.G. Johnson, H.B. Schlegel, M.A. Robb, E.S. Replogle, R.
                              Gomperts, J.L. Andres, K. Raghavachari, J.S. Binkley, C. Gonzales, R.L.
                              Martin, D.J. Fox, D.J. DeFrees, J. Baker,.J.P.P. Stewart and J.A. Pople,
                              Gaussian 92, Gaussian Inc., Pittsburg (1992).
   271   272   273   274   275   276   277   278   279   280   281