Page 280 - The Biochemistry of Inorganic Polyphosphates
P. 280
WU095/Kulaev
WU095-Ref
References
264 March 9, 2004 15:57 Char Count= 0
N. M. Verbina (1964). The physiological significance of polyphosphates in microorganisms (in
Russian). Usp. Mikrobiol., 1, 75–103.
H. Voelz, V. Voelz and R. P. Ortihoza (1966). The ‘polyphosphate overplus’ phenomenon in Myxo-
coccus xanthuss and its influence on the architecture of the cell. Arch. Microbiol., 53, 371–388.
J. Voˇr´ıˇsek and H. Zachleder (1984). Redistribution of phosphate deposites in the algae scenedesmus
quadricands depreved of exogenous phosphate – an ultra-cytochemical study. Protoplasma, 119,
168–177.
J. Voˇr´ıˇsek, A. Knotkov´a and A. Kotyk (1982). Fine cytochemical localization of polyphosphates in
the yeast Saccharomyces cerevisiae. Zbl. Mikrobiol., 137,421–432.
G. I. Vorob’eva, S. P. Grigor’eva, I. S. Kulaev and G. N. Maksimova (1973). Studies on the
regularities of phosphate metabolism in yeasts cultivated on hydrocarbons, in Proceedings of the
3rd International Special Symposium on Yeasts, Otaniemi, Helsinki, Finland, p. 51.
G. Wachtershauser (1992). Groundworks for an evolutionary biochemistry: the iron-sulphur world.
Prog. Biophys. Molec. Biol., 58, 85–201.
H. E. Wade and D. M. Morgan (1955). Fractionation of phosphates by paper ionophoresis and
chromatography. Biochem J., 60, 264–271.
M. Wagner, R. Erhart, W. Manz, R. Amann, H. Lemmr, D. Wedi and K.-H. Schleifer (1994).
Development of an rRNA-target oligonucleotide probe specific for the genis acinetobacter and
its application for in situ minitoring in activated sludge. Appl. Envivron. Microbiol., 60, 792–
800.
J. C. A. Walker and P. Brimblecomble (1985). Iron and sulphur in the pre-biological ocean.
Precambrian Res., 28, 205–222.
D. Wang and D. Manchini (1966). Studies on ribonucleic acid–polyphosphate in plants. Biochem.
Biophys. Acta, 129, 231–239.
T. L. Wang and S. F. Y. Li (1998). Separation of synthetic inorganic polymers of condensed phos-
phates by capillary gel electrophoresis with indirect photometric detection. J. Chromatog. A, 802,
159–165.
T. P. Wang and N. O. Kaplan (1954). Kinases for the synthesis of coenzyme A and triphosphopyridine
nucleotide. J. Biol. Chem., 206, 311–325.
L. Wang, C. D. Fraley, J. Faridi, A. Kornberg and R. A. Roth (2003). Inorganic polyphosphate
stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. Proc.
Natl. Acad. Sci. USA, 100, 11249–11254.
B. L. Wanner (1994). Multiple controls of E. coli Pho regulon by the Pi sensor PhoR. The catabolite
sensor CreC and acetyl phosphate. In A. Torriani-Gorini, S. Silver and E. Yagil (Eds), Phosphate
in Microorganisms, American Society of Microbiology, Washington, DC, USA, pp. 1–4.
B. L. Wanner (1995). Signal transduction and cross regulation in the E. coli phosphate regulon
PhoR. CreC and acetyl phosphate. In J. A. Hoch and T. J. Silhavy (Eds), Two Component Signal
Transduction, American Society of Microbiology, Washington, DC, USA, pp. 203–221.
E. C. Wassink (1957). Phosphate in the photosynthetic cycle in Chlorella. In M. H. Gaffron (Ed.),
Research in Photosynthesis, International Publishers, New York, pp. 333–338.
E. C. Wassink, J. F. G. M. Wintermans and J. E. Tjia (1951). Phosphate exchanges in Chlorella in
relation to conditions for photosynthesis. Proc. Kon. Ned. Akad. Wet., 54, 41–52.
M. Watanabe, K. Kohata and M. Kunugi (1987). 31 P nuclear magnetic resonance study of intra-
cellular phosphate pools and polyphosphate metabolism in Heterosigma akashiro (Hada) Hada
(Raphidophyceae). J. Phycol., 23, 54–62.
M. Watanabe, K. Kohata and M. Kunugi (1988). Phosphate accumulation and metabolism by