Page 282 - The Biochemistry of Inorganic Polyphosphates
P. 282
WU095/Kulaev
WU095-Ref
References
266 March 9, 2004 15:57 Char Count= 0
J. P. Wilkinson and J. P. Duguid (1960). The influence of cultural conditions on bacterial cytology.
Int. Rev. Cytol., 9, 1–76.
D. H. Williamson and J. P. Wilkinson (1958). The isolation and estimation of the poly-β-
hydroxybutyrate inclusions of Bacillus species. J. Gen. Microbiol., 19, 198–204.
F. G. Winder and J. Denneny (1954). Metaphosphate in mycobacterial metabolism. Nature (London),
174, 353.
F. G. Winder and J. M. Denneny (1955). Utilization of metaphosphate for phosphorylation by
cell-free exacts of Mycobacterium smegmatis. Nature (London), 175, 636–638.
F. G. Winder and Denneny J. M. (1957). The metabolism of inorganic polyphosphate in Mycobacteria.
J. Gen. Microbiol., 17, 573–585.
F. G. Winder and H. G. Roche (1967). The accumulation of inorganic polyphosphate brought about
by tetrahydrofurfuryl alcohol in Mycobacterium smegmatis. Biochem. J., 103, 57–69.
J. F. G. Wintermans (1954). On the formation of polyphosphates in Chlorella in relation to conditions
of photosynthesis. Proc. Kon. Ned. Acad. Wet., 57, 254.
J. F. G. Wintermans (1955). Polyphosphate formation in Chlorella in relation to photosynthesis.
Meded. Landbouwhogesch. Wageningen, 55, 69–126.
J. F. G. Wintermans and J. E. Tija (1952). Some observations on the properties of phosphate com-
pounds in Chlorella in relation to conditions for photosynthesis. Proc. Kon. Ned. Acad. Wet., 55,34–
47.
C. R. Woese, O. Kandler and M. L. Wheekis (1990). Towards a natural system of organisms:
proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA, 87, 4576–
4579.
A. Wojtezak (1954). Chromatograficzne rozdeielanie orto-, pyro- i metafosforanow v wydulin
gusienie mola weskowego. Acta Physiol. Pol., 5, 590–609.
B. Wolska-Mitaszko (1997). Trehalases from spores and vegetative cells of yeast Saccharomyces
cerevisiae. J. Basic Microbiol., 37, 295–303.
H. G. Wood and J. E. Clark (1988). Biological aspects of inorganic polyphosphates. Ann. Rev.
Biochem., 57, 235–260.
H. Wurst and A. Kornberg (1994). A soluble exopolyphosphatase of Saccharomyces cerevisiae.
J. Biol. Chem., 269, 10996–101001.
H. Wurst, T. Shiba and A. Kornberg (1995). The gene for a major exopolyphosphatase of
Saccharomyces cerevisiae. J. Bacteriol., 177, 898–906.
A. Yamada, K. Tsutsumi, O. Tanimoto and Y. Ozeki (2003). Plant RelA/SpoT homolog confers
salt tolerance in Escherichia coli and Saccharomyces cerevisiae. Plant Cell Physiol., 44,
3–9.
Y. Yamagata and K. Inomata (1997). Condensation of glycylglycine to oligoglycines with
trimetaphosphate in aqueous solution. II: catalytic effect of magnesium ion. Origin Life Evol.
Biosph., 27, 339–344.
Y. Yamagata, H. Watanabe, M. Saitoh and T. Namba (1991). Volcanic production of polyphosphates
and its relevance to prebiotic evolution. Nature (London), 352, 516–519.
Y. Yamagata, H. Inoue and K. Inomata (1995). Specific effect of magnesium ion on 2 ,3 -cyclic AMP
synthesis from adenosine and trimetaphosphate in aqueous solution. Origin Life Evol. Biosph.,
25, 47–52.
Y. C. Yang, M. Bestos and K. J. Chen (1993). Effect of osmotic stress and growth stage on cellular
pH and polyphosphate metabolism in Neurospora crassa as studied by 31-P-nuclear magnetic
resonance spectroscopy. Biochim. Biophys. Acta, 1179, 141–147.