Page 18 - The Mechatronics Handbook
P. 18
All of these definitions and statements about mechatronics are accurate and informative, yet each one
in and of itself fails to capture the totality of mechatronics. Despite continuing efforts to define mecha-
tronics, to classify mechatronic products, and to develop a standard mechatronics curriculum, a consensus
opinion on an all-encompassing description of “what is mechatronics” eludes us. This lack of consensus
is a healthy sign. It says that the field is alive, that it is a youthful subject. Even without an unarguably
definitive description of mechatronics, engineers understand from the definitions given above and from
their own personal experiences the essence of the philosophy of mechatronics.
For many practicing engineers on the front line of engineering design, mechatronics is nothing new.
Many engineering products of the last 25 years integrated mechanical, electrical, and computer systems,
yet were designed by engineers that were never formally trained in mechatronics per se. It appears that
modern concurrent engineering design practices, now formally viewed as part of the mechatronics
specialty, are natural design processes. What is evident is that the study of mechatronics provides a
mechanism for scholars interested in understanding and explaining the engineering design process to
define, classify, organize, and integrate many aspects of product design into a coherent package. As the
historical divisions between mechanical, electrical, aerospace, chemical, civil, and computer engineering
become less clearly defined, we should take comfort in the existence of mechatronics as a field of study
in academia. The mechatronics specialty provides an educational path, that is, a roadmap, for engineering
students studying within the traditional structure of most engineering colleges. Mechatronics is generally
recognized worldwide as a vibrant area of study. Undergraduate and graduate programs in mechatronic
engineering are now offered in many universities. Refereed journals are being published and dedicated
conferences are being organized and are generally highly attended.
It should be understood that mechatronics is not just a convenient structure for investigative studies
by academicians; it is a way of life in modern engineering practice. The introduction of the microprocessor
in the early 1980s and the ever increasing desired performance to cost ratio revolutionized the paradigm
of engineering design. The number of new products being developed at the intersection of traditional
disciplines of engineering, computer science, and the natural sciences is ever increasing. New develop-
ments in these traditional disciplines are being absorbed into mechatronics design at an ever increasing
pace. The ongoing information technology revolution, advances in wireless communication, smart sen-
sors design (enabled by MEMS technology), and embedded systems engineering ensures that the engi-
neering design paradigm will continue to evolve in the early twenty-first century.
1.2 Key Elements of Mechatronics
The study of mechatronic systems can be divided into the following areas of specialty:
1. Physical Systems Modeling
2. Sensors and Actuators
3. Signals and Systems
4. Computers and Logic Systems
5. Software and Data Acquisition
The key elements of mechatronics are illustrated in Fig. 1.1. As the field of mechatronics continues to
mature, the list of relevant topics associated with the area will most certainly expand and evolve.
1.3 Historical Perspective
Attempts to construct automated mechanical systems has an interesting history. Actually, the term “auto-
mation” was not popularized until the 1940s when it was coined by the Ford Motor Company to denote
a process in which a machine transferred a sub-assembly item from one station to another and then
positioned the item precisely for additional assembly operations. But successful development of automated
mechanical systems occurred long before then. For example, early applications of automatic control
©2002 CRC Press LLC