Page 104 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 104

A general existence theorem                                        91

                3.3.1   Exercises
                Exercise 3.3.1 Prove Theorem 3.3 under the hypotheses (H1+), (H2) and (H3).

                Exercise 3.3.2 Prove Theorem 3.3 if

                                      f (x, u, ξ)= g (x, u)+ h (x, ξ)
                where       ¡      ¢
                                  n
                   (i) h ∈ C 1  Ω × R , ξ → h (x, ξ) is convex for every x ∈ Ω,and thereexist
                p> 1 and α 1 > 0, β, α 3 ∈ R such that
                                              p
                                 h (x, ξ) ≥ α 1 |ξ| + α 3 , ∀ (x, ξ) ∈ Ω × R n
                                          ³         ´
                                                 p−1                 n
                              |h ξ (x, ξ)| ≤ β 1+ |ξ|  , ∀ (x, ξ) ∈ Ω × R ;
                            ¡      ¢
                   (ii) g ∈ C 0  Ω × R , g ≥ 0 and either of the following three cases hold
                     Case 1: p> n. For every R> 0,there exists γ = γ (R) such that

                                      |g (x, u) − g (x, v)| ≤ γ |u − v|
                for every x ∈ Ω and every u, v ∈ R with |u| , |v| ≤ R .
                     Case 2: p = n.There exist q ≥ 1 and γ> 0 so that
                                                ³                ´
                                                       q−1    q−1
                            |g (x, u) − g (x, v)| ≤ γ 1+ |u|  + |v|  |u − v|
                for every x ∈ Ω and every u, v ∈ R.
                     Case 3: p< n.There exist q ∈ [1,np/ (n − p)) and γ> 0 so that
                                                ³                ´
                                                       q−1    q−1
                            |g (x, u) − g (x, v)| ≤ γ 1+ |u|  + |v|  |u − v|
                for every x ∈ Ω and every u, v ∈ R.

                                                                                   N
                Exercise 3.3.3 Prove Theorem 3.3 in the following framework. Let α, β ∈ R ,
                N> 1 and
                                     (                            )
                                             Z  b
                            (P)   inf  I (u)=   f (x, u (x) ,u (x)) dx  = m
                                                           0
                                 u∈X
                                              a
                          ©      1,p  ¡    N  ¢                 ª
                where X = u ∈ W     (a, b); R  : u (a)= α, u (b)= β and
                                     N
                   (i) f ∈ C 1  ¡ [a, b] × R × R N  ¢ , (u, ξ) → f (x, u, ξ) is convex for every x ∈
                [a, b];
                   (ii) there exist p> q ≥ 1 and α 1 > 0, α 2 ,α 3 ∈ R such that
                                                                            N
                                                                       N
                                     p
                                             q
                      f (x, u, ξ) ≥ α 1 |ξ| + α 2 |u| + α 3 , ∀ (x, u, ξ) ∈ [a, b] × R × R ;
   99   100   101   102   103   104   105   106   107   108   109