Page 212 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 212

Chapter 3: Direct methods                                         199

                                                            q
                   Case 3: p< n.We now only have u, ϕ ∈ L , ∀q ∈ [1,np/ (n − p)].We
                                                                    p
                                                                     0
                                         q
                                          0
                therefore should have f u ∈ L , q = q/ (q − 1),and f ξ ∈ L . This happens if
                                             0
                there exist β> 0, 1 ≤ s 1 ≤ (np − n + p) / (n − p), 1 ≤ s 2 ≤ (np − n + p) /n,
                1 ≤ s 3 ≤ n (p − 1) / (n − p) so that
                                                                ³               ´
                                                                             p−1
                                       s 1   s 2                      s 3
                   |f u (x, u, ξ)| ≤ β (1 + |u|  + |ξ| ) , |f ξ (x, u, ξ)| ≤ β 1+ |u|  + |ξ|  .
                Exercise 3.4.2. Use the preceding exercise to deduce the following growth
                                  ¡
                                        ¢
                conditions on g ∈ C 1  Ω × R .
                   Case 1: p>n. No growth condition is imposed on g.
                   Case 2: p = n.There exist β> 0 and s 1 ≥ 1 such that
                                                  s 1
                               |g u (x, u)| ≤ β (1 + |u| ) , ∀ (x, u) ∈ Ω × R .
                   Case 3: p<n.There exist β> 0 and 1 ≤ s 1 ≤ (np − n + p) / (n − p),so
                that
                               |g u (x, u)| ≤ β (1 + |u| ) , ∀ (x, u) ∈ Ω × R .
                                                  s 1
                Exercise 3.4.3. (i) Let N be an integer and
                                        u N (x, t)=sin Nx sin t.

                                                                Ω and u N =0 on ∂Ω).
                We obviously have u N ∈ W  1,2  (Ω) (in fact u N ∈ C ∞  ¡ ¢
                                        0
                An elementary computation shows that lim I (u N )= −∞.
                   (ii) The second part is elementary.
                   It is also clear that for the wave equation it is not reasonable to impose an
                initial condition (at t =0)and a final condition (at t = π).

                7.3.4   The vectorial case

                Exercise 3.5.1. Let
                                       µ       ¶       µ       ¶
                                          2  0            0  0
                                   ξ =           ,ξ =            .
                                    1     0  0      2     0  2
                We therefore have the desired contradiction, namely
                                                                 µ          ¶
                   1        1        1       2  1        2         1     1
                    f (ξ )+ f (ξ )=   (det ξ ) +  (det ξ ) =0 <f    ξ + ξ  2  =1 .
                                2
                                                       2
                       1
                                           1
                                                                     1
                   2        2        2          2                  2     2
                Exercise 3.5.2. We divide the discussion into two steps.
                                       ¡     ¢
                   Step 1. Let u, v ∈ C 2  Ω; R 2  with u = v on ∂Ω.Write u = u (x, y)=
                (ϕ (x, y) ,ψ (x, y)) and v = v (x, y)= (α (x, y) ,β (x, y)).Use the fact that
                                                      ¡    ¢
                               det ∇u = ϕ ψ − ϕ ψ = ϕψ       − (ϕψ )
                                         x  y   y  x      y x      x y
   207   208   209   210   211   212   213   214   215   216   217