Page 214 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 214

Chapter 3: Direct methods                                         201

                                                ¢
                                               2
                Exercise 3.5.3. Let u ∈ C 2  ¡ Ω; R , u (x, y)=(ϕ (x, y) ,ψ (x, y)),be a mini-
                                         ¡    2  ¢
                mizer of (P) and let v ∈ C 0 ∞  Ω; R , v (x, y)= (α (x, y) ,β (x, y)), be arbitrary.
                Since I (u +  v) ≥ I (u) for every  ,we musthave
                                  ¯
                        d         ¯
                0=       I (u +  v) ¯
                       d          ¯
                                   =0
                          ½ZZ                                                  ¾¯
                        d      £          ¡       ¢   ¡       ¢          ¤      ¯
                   =            (ϕ +  α x ) ψ +  β y  − ϕ +  α y (ψ +  β ) dxdy  ¯
                                                                       x
                                                        y
                                  x
                                                                  x
                                            y
                       d      Ω                                                 ¯  =0
                       ZZ
                           £¡           ¢   ¡           ¢¤
                   =         ψ α x − ψ α y + ϕ β − ϕ β    dxdy .
                              y      x        x y    y x
                         Ω
                Integrating by parts, we find that the right hand side vanishes identically. The
                result is not surprising in view of Exercise 3.5.2, which shows that I (u) is in fact
                constant.
                Exercise 3.5.4. The proof is divided into two steps.
                   Step 1. It is easily proved that the following algebraic inequality holds
                           |det A − det B| ≤ α (|A| + |B|) |A − B| , ∀A, B ∈ R 2×2
                where α is a constant.
                   Step 2. We therefore deduce that
                                        p/2   p/2            p/2         p/2
                        |det ∇u − det ∇v|  ≤ α   (|∇u| + |∇v|)  |∇u −∇v|   .
                Hölder inequality implies then

                                    ZZ
                                                         p/2
                                         |det ∇u − det ∇v|  dxdy
                                        Ω
                          µZZ                     ¶ 1/2  µZZ                ¶ 1/2
                                                                      p
                                            p
                    ≤ α p/2      (|∇u| + |∇v|) dxdy          |∇u −∇v| dxdy      .
                               Ω                           Ω
                We therefore obtain that
                                                                           2/p
                                             µZZ                          ¶
                       kdet ∇u − det ∇vk L p/2 =   |det ∇u − det ∇v| p/2  dxdy
                                                  Ω
                         µZZ                     ¶ 1/p  µZZ                ¶ 1/p
                                           p                         p
                      ≤ α       (|∇u| + |∇v|) dxdy          |∇u −∇v| dxdy
                              Ω                           Ω
                and hence the claim.
                Exercise 3.5.5. For more details concerning this exercise see [31] page 158.
   209   210   211   212   213   214   215   216   217   218   219