Page 223 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 223

210                                            Solutions to the Exercises

                       7.5    Chapter 5: Minimal surfaces

                       7.5.1   Generalities about surfaces

                       Exercise 5.2.1. (i) Elementary.
                          (ii) Apply (i) with a = v x , b = v y and the definition of E, F and G.
                          (iii) Since e 3 =(v x × v y ) / |v x × v y |,wehave

                                                he 3 ; v x i = he 3 ; v y i =0 .

                       Differentiating with respect to x and y, we deduce that

                                    0= he 3 ; v xx i + he 3x ; v x i = he 3 ; v xy i + he 3y ; v x i
                                       = he 3 ; v xy i + he 3x ; v y i = he 3 ; v yy i + he 3y ; v y i
                       and the result follows from the definition of L, M and N.
                       Exercise 5.2.2. (i) We have

                                     v x =(−y sin x, y cos x, a) ,v y =(cos x, sin x, 0) ,
                                                  (−a sin x, a cos x, −y)
                                              e 3 =    p             ,
                                                         a + y 2
                                                          2
                               v xx =(−y cos x, −y sin x, 0) ,v xy =(− sin x, cos x, 0) ,v yy =0

                       and hence
                                                                              a
                                      2   2
                                 E = a + y ,F =0,G =1,L = N =0,M = p
                                                                             2
                                                                            a + y 2
                       which leads to H =0, as wished.
                          (ii) A straight computation gives
                                   ¡     2   2         ¢      ¡          2   2     ¢
                               v x = 1 − x + y , −2xy, 2x ,v y = 2xy, −1+ y − x , −2y ,
                                                   ¡       2   2   ¢
                                                    2x, 2y, x + y − 1
                                              e 3 =                  ,
                                                                2
                                                           2
                                                      (1 + x + y )
                               v xx =(−2x, − 2y, 2) ,v xy =(2y, −2x, 0) ,v yy =(2x, 2y, −2)
                       and hence
                                         ¡    2    2  ¢ 2
                                 E = G = 1+ x + y     ,F =0,L = −2,N =2,M =0
                       which shows that, indeed, H =0.      ¡      ¢
                                                      2
                       Exercise 5.2.3. (i) Since |v x × v y | = w 2  1+ w 02  , we obtain the result.
   218   219   220   221   222   223   224   225   226   227   228