Page 226 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 226

Chapter 5: Minimal surfaces                                       213

                7.5.2   The Douglas-Courant-Tonelli method
                Exercise 5.3.1. We have

                                 w x = v λ λ x + v µ µ ,w y = v λ λ y + v µ µ y
                                                x
                and thus
                                 2         2  2                  2   2
                              |w x |  = |v λ | λ +2λ x µ hv λ ; v µ i + µ |v µ |
                                             x
                                                     x
                                                                 x
                                 2         2  2                 2    2
                              |w y |  = |v λ | λ +2λ y µ hv λ ; v µ i + µ |v µ | .
                                             y       y          y
                Since λ x = µ and λ y = −µ , we deduce that
                           y
                                        x
                                               h          i
                                    2      2       2     2  £  2  2  ¤
                                 |w x | + |w y | = |v λ | + |v µ |  λ + λ y
                                                             x
                and thus
                      ZZ                       ZZ
                          h            i           h           i
                               2      2                2      2  £  2  2  ¤
                           |w x | + |w y |  dxdy =  |v λ | + |v µ |  λ + λ y  dxdy .
                                                                  x
                         Ω                        Ω
                Changing variables in the second integral, bearing in mind that
                                                      2
                                                           2
                                        λ x µ − λ y µ = λ + λ ,
                                                  x
                                                      x
                                           y
                                                           y
                we get the result, namely
                           ZZ                      ZZ
                               h           i            h          i
                                   2      2                 2     2
                                |w x | + |w y |  dxdy =  |v λ | + |v µ |  dλdµ .
                             Ω                        B
                7.5.3   Nonparametric minimal surfaces
                Exercise 5.5.1. Set
                               1+ u 2 x           u x u y          1+ u 2 y
                        f = q           ,g = q            ,h = q            .
                                                                      2
                                                    2
                                  2
                              1+ u + u 2 y      1+ u + u 2 y     1+ u + u  2 y
                                                    x
                                  x
                                                                      x
                A direct computation shows that
                                         f y = g x and g y = h x ,
                since
                                  ¡    2  ¢               ¡    2  ¢
                            Mu = 1+ u    u xx − 2u x u y u xy + 1+ u  u yy =0 .
                                       y                       x
                Setting
                           Z  x  Z  y         Z  x  Z  t         Z  y  Z  t
                   ϕ (x, y)=      g (s, t) dtds +    f (s, 0) dsdt +    h (0,s) dsdt
                             0  0              0   0               0  0
   221   222   223   224   225   226   227   228   229   230   231