Page 230 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 230

Chapter 6: Isoperimetric inequality                               217

                In particular we have that ϕ, ψ ∈ W  1,2  (−1, 1),with ϕ (−1) = ϕ (1) and ψ (−1) =
                ψ (1),and
                                                Z
                                           2      β i ¡  02   02  ¢
                               L (a i ,b i )=       ϕ (y)+ ψ (y) dy             (7.27)
                                         L (a, b)
                                                 α i
                                               Z
                                                 β i
                                                         0
                                    M (a i ,b i )=  ϕ (y) ψ (y) dy .            (7.28)
                                                α i
                We thus obtain, using (7.26), (7.27) and (7.28),
                                  ∞                   Z  1
                                  X               2      ¡          02  ¢
                                                            02
                         L (a, b)=   L (a i ,b i )=       ϕ (y)+ ψ (y) dy
                                               L (a, b)  −1
                                  i=1
                                        ∞             Z  1
                                        X
                              M (a, b)=    M (a i ,b i )=  ϕ (y) ψ (y) dy .
                                                               0
                                                       −1
                                        i=1
                We therefore find, invoking Corollary 6.3, that
                                                     2
                           2
                    [L (u, v)] − 4πM (u, v)= [L (a, b)] − 4πM (a, b)
                                               Z  1                 Z  1
                                                  ¡  02   02 ¢
                                          =2       ϕ + ψ     dy − 4π   ϕψ dy ≥ 0
                                                                          0
                                                −1                   −1
                as wished.
                7.6.2   The case of dimension n
                Exercise 6.3.1. We clearly have
                                                 ¡     ¢
                                    C =(a + B) ∪ b + A ⊂ A + B.

                                               ¡     ¢  ©     ª
                It is also easy to see that (a + B) ∩ b + A = a + b . Observe then that
                                       ¡     ¢    £         ¡     ¢¤
                 M (C)= M (a + B)+ M b + A − M (a + B) ∩ b + A      = M (A)+ M (B)

                and hence
                                     M (A)+ M (B) ≤ M (A + B) .
                Exercise 6.3.2. (i) We adopt the same notations as those of Exercise 5.2.4.
                                                                      2
                By hypothesis there exist a bounded smooth domain Ω ⊂ R and a map v ∈
                  ¡
                        ¢
                                                                        ¡ ¢
                C 2  Ω; R 3  (v = v (x, y),with v x × v y 6=0 in Ω)sothat ∂A 0 = v Ω .
                   From the divergence theorem it follows that
                                              ZZ
                                            1
                                   M (A 0 )=      hv; v x × v y i dxdy .        (7.29)
                                            3   Ω
   225   226   227   228   229   230   231   232   233   234   235