Page 233 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 233
220 BIBLIOGRAPHY
[14] Brézis H., Analyse fonctionnelle, théorie et applications,Masson,Paris,
1983.
[15] Buttazzo G., Semicontinuity, relaxation and integral represention in the
calculus of variations, Pitman, Longman, London, 1989.
[16] Buttazzo G., Ferone V. and Kawohl B., Minimum problems over sets of
concave functions and related questions, Math. Nachrichten 173 (1995),
71-89.
[17] Buttazzo G., Giaquinta M. and Hildebrandt S., One dimensional varia-
tional problems, Oxford University Press, Oxford, 1998.
[18] Buttazzo G. and Kawohl B., On Newton’s problem of minimal resistance,
Math. Intell. 15 (1992), 7-12.
[19] Carathéodory C., Calculus of variations and partial differential equations
of the first order, Holden Day, San Francisco, 1965.
[20] Cesari L., Optimization - Theory and applications, Springer, New York,
1983.
[21] Chern S.S., An elementary proof of the existence of isothermal parameters
on a surface, Proc. Amer. Math. Soc., 6 (1955), 771-782.
[22] Ciarlet P., Mathematical elasticity, Volume 1, Three dimensional elasticity,
North Holland, Amsterdam, 1988.
[23] Clarke F.H., Optimization and nonsmooth analysis, Wiley, New York,
1983.
[24] Courant R., Dirichlet’s principle, conformal mapping and minimal sur-
faces, Interscience, New York, 1950.
[25] Courant R., Calculus of variations, Courant Institute Publications, New
York, 1962.
[26] Courant R. and Hilbert D., Methods of mathematical physics,Wiley,New
York, 1966.
[27] Crandall M.G., Ishii H. and Lions P.L., User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. 27
(1992), 1-67.
[28] Croce G. and Dacorogna B., On a generalized Wirtinger inequality, Disc.
and Cont. Dyn. Syst. Ser. A, 9 (2003), 1329-1341.