Page 236 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 236
BIBLIOGRAPHY 223
[61] Hsiung C.C., A first course in differential geometry,Wiley,New York,
1981.
[62] Ioffe A.D. and Tihomirov V.M., Theory of extremal problems,North Hol-
land, Amsterdam, 1979.
[63] John F., Partial differential equations, Springer, Berlin, 1982.
[64] Kawohl B., Recent results on Newton’s problem of minimal resistance,
Nonlinear analysis and applications (Warsaw, 1994), Gakuto Internat. Ser.
Math. Sci. Appl., 7 (1996), 249—259.
[65] Kinderlherer D. and Stampacchia G., Introduction to variational inequal-
ities and their applications, Academic Press, New York, 1980.
[66] Ladyzhenskaya O.A. and Uraltseva N.N., Linear and quasilinear elliptic
equations, Academic Press, New York, 1968.
[67] Lebesgue H., Leçons sur l’intégration et la recherche des fonctions primi-
tives, Gauthier-Villars, Paris, 1928.
[68] Lions J.L. and Magenes E., Non-homogeneous boundary value problems
and applications I,II,III, Springer, Berlin, 1972.
[69] Lions P.L., Generalized solutions of Hamilton-Jacobi equations,Research
Notes in Math. 69, Pitman, London, 1982.
[70] Marcellini P., Non convex integrals of the calculus of variations, in: Meth-
ods of nonconvex analysis, ed. Cellina A., Lecture Notes in Math. 1446,
Springer, Berlin, 1990, 16-57.
[71] Marcellini P. and Sbordone C., Semicontinuity problems in the calculus of
variations, Nonlinear Anal., Theory, Methods and Applications 4 (1980),
241-257.
[72] Mawhin J. and Willem M., Critical point theory and Hamiltonian systems,
Springer, Berlin, 1989.
[73] Monna A.F., Dirichlet’s principle: a mathematical comedy of errors and
its influence on the development of analysis, Oosthoeck, Utrecht, 1975.
[74] Morrey C.B., Quasiconvexity and the lower semicontinuity of multiple in-
tegrals, Pacific J. Math. 2 (1952), 25-53.
[75] Morrey C.B., Multiple integrals in the calculus of variations,Springer,
Berlin, 1966.