Page 240 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 240

Index




                Absolutely continuous functions, 39   Ellipticity
                Ascoli-Arzela Theorem, 12, 36, 141        uniform, 124
                                                      Enneper surface, 133, 137, 146
                Banach fixed point theorem, 148, 149   Equicontinuity, 12
                Bernstein problem, 147                Equiintegrability, 20
                Bolza example, 87, 109                Euler-Lagrange equation, 2, 8, 9, 22,
                Bolzano-Weierstrass Theorem, 20               45, 46, 48—50, 52—56, 59—
                Brachistochrone, 1, 4, 55                     62, 66—68, 72—76, 80, 92,
                Brunn-Minkowski theorem, 10, 160,             93, 97, 98, 100, 106, 111—
                        163, 164                              113, 116, 124, 125, 128, 129,
                                                              135, 141, 160
                Canonical form, 62                    Exact field, 75—77
                Carathéodory theorem, 42, 107
                Catenoid, 5, 133, 134                 Fermat principle, 3, 56
                Cauchy-Schwarz inequality, 17, 122    Fourier series, 20, 155
                Conformal mapping, 129, 140, 141,     Fubini theorem, 33
                        143, 145                      Fundamental lemma of the calculus
                Conformal parameters, 136                     of variations, 23, 49, 81, 95,
                Convergence                                   113, 136, 144
                    in the sense of distributions, 105
                    strong, 18                        Gaussian curvature, 132
                    weak, 18
                    weak*, 18                         Hölder continuous functions, 14, 15
                Convex envelope, 42, 107, 108         Hölder inequality, 17, 22, 23, 30, 31,
                Convex function, 46                           33, 38, 90, 101, 103
                Courant-Lebesgue lemma, 141           Hahn-Banach theorem, 30
                Cycloid, 4, 55                        Hamilton-Jacobi equation, 46, 69—
                                                              72, 77, 78
                Difference quotient, 120, 121, 125     Hamiltonian, 46, 62, 66—69, 71
                Dirac mass, 26, 107                   Hamiltonian system, 66—68, 72, 115
                Dirichlet integral, 2, 5, 9, 10, 79—81,  Harmonic function, 137, 141
                        85, 95, 111, 117, 141, 143    Harnack theorem, 141
                DuBois-Reymond equation, 59           Helicoid, 133
                                                 227
   235   236   237   238   239   240   241