Page 237 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 237

224                                                  BIBLIOGRAPHY


                        [76] Morse M., The calculus of variations in the large, Amer. Math. Soc., New
                            York, 1934.
                        [77] Necas J., Lesméthodesdirectes enthéorie deséquations elliptiques,Mas-
                            son, Paris, 1967.
                        [78] Nitsche J.C., Lecture on minimal surfaces, Cambridge University Press,
                            Cambridge, 1989.
                                                                                     1
                        [79] Ornstein D., A non-inequality for differential operators in the L norm,
                            Arch. Rational Mech. Anal. 11 (1962), 40-49.

                        [80] Osserman R., A survey on minimal surfaces, Van Nostrand, New York,
                            1969.

                        [81] Osserman R., The isoperimetric inequality, Bull. Amer. Math. Soc. 84
                            (1978), 1182-1238.

                        [82] Pars L., An introduction to the calculus of variations, Heinemann, London,
                            1962.

                        [83] Payne L., Isoperimetric inequalities and their applications, SIAM Rev. 9
                            (1967), 453-488.

                        [84] Pisier G., Thevolumeofconvexbodiesand Banach spacegeometry,Cam-
                            bridge University Press, Cambridge, 1989.

                        [85] PolyaG. and SzegöG., Isoperimetric inequalities in mathematical physics,
                            Princeton University Press, Princeton, 1951.

                        [86] Porter T.I., A history of the classical isoperimetric problem, in Contribu-
                            tions to the calculus of variations (1931-1932), edited by Bliss G.A. and
                            Graves L.M., University of Chicago Press, Chicago, 1933.

                        [87] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton,
                            1970.

                        [88] Rudin W., Real and complex analysis, McGraw-Hill, New York, 1966.
                        [89] Rudin W., Functional analysis, McGraw-Hill, New York, 1973.

                        [90] Rund H., The Hamilton-Jacobi theory in the calculus of variations,Van
                            Nostrand, Princeton, 1966.
                        [91] Struwe M., Plateau’s problem and the calculus of variations,Princeton
                            University Press, Princeton, 1988.
   232   233   234   235   236   237   238   239   240   241