Page 238 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 238
BIBLIOGRAPHY 225
[92] Struwe M., Variational methods: applications to nonlinear partial differ-
ential equations and Hamiltonian systems, Springer, Berlin, 1990.
[93] Sverak V., Rank one convexity does not imply quasiconvexity, Proc. Royal
Soc. Edinburgh 120A (1992), 185-189.
[94] Tonelli L., Fondamenti di calcolo delle variazioni I and II, Zanichelli,
Bologna, 1921.
[95] Troutman J.L., Variational calculus with elementary convexity,Springer,
New York, 1983
[96] Webster R., Convexity, Oxford University Press, Oxford, 1994.
[97] Weinstock R., Calculus of variations with applications to physics and en-
gineering, McGraw-Hill, New York, 1952.
[98] Young L.C., Lectures on the calculus of variations and optimal control
theory, W.B. Saunders, Philadelphia, 1969.
[99] Zeidler E., Nonlinear functional analysis and its applications, I, II, III,
IV, Springer, New York, 1985-1988.
[100] Ziemer W.P., Weakly differentiable functions, Springer, New York, 1989.