Page 238 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 238

BIBLIOGRAPHY                                                      225

                 [92] Struwe M., Variational methods: applications to nonlinear partial differ-
                     ential equations and Hamiltonian systems, Springer, Berlin, 1990.
                 [93] Sverak V., Rank one convexity does not imply quasiconvexity, Proc. Royal
                     Soc. Edinburgh 120A (1992), 185-189.
                 [94] Tonelli L., Fondamenti di calcolo delle variazioni I and II, Zanichelli,
                     Bologna, 1921.
                 [95] Troutman J.L., Variational calculus with elementary convexity,Springer,
                     New York, 1983
                 [96] Webster R., Convexity, Oxford University Press, Oxford, 1994.

                 [97] Weinstock R., Calculus of variations with applications to physics and en-
                     gineering, McGraw-Hill, New York, 1952.

                 [98] Young L.C., Lectures on the calculus of variations and optimal control
                     theory, W.B. Saunders, Philadelphia, 1969.

                 [99] Zeidler E., Nonlinear functional analysis and its applications, I, II, III,
                     IV, Springer, New York, 1985-1988.

                [100] Ziemer W.P., Weakly differentiable functions, Springer, New York, 1989.
   233   234   235   236   237   238   239   240   241